
-A92 9940 NETMDKS OF MARKOVIRN QUEUES(U) AM ENGINEER NATERWRYS 1/4
EXPERIMENT STATION VICKSBURG HS INSTRUMENTATION
SERVICES DIV R A FRANCO MAY 97 MES/TR/O-9?-2

UNC SIFII F/G 12/3 L

EEMhBhhhhEBhhI
IllllEElllllEI
Elllllllllll
IIIIIIIIIIIIIIl
EIEEEIIIIIIIEE
EEIIIIIIIIIIIE



" 2.8 1 "

1111 IL

WW .!WW05 *0 0 a .,0 0 0W w w

'Lt|v .y t c 'V.y -. * *. ,~.

I' P _ _



OTC FtE CM_
TECHNICAL REPORT 0-87-2

NETWORKS OF MARKOVIAN QUEUES
by

Raphael A. Franco, Jr.

Instrumentation Services Division

------- DEPARTMENT OF THE ARMY

Waterways Experiment Station, Corps of Engineers01 ,, - PO Box 631, Vicksburg, Mississippi 39180-0631

00

2.1

~May 1987

,Final Report

Approved For Public Release; Distribution Unlimited

10T1

Prepared for DEPARTMENT OF THE ARMY
US Army Corps of Engineers
Washington, DC 20314-1000

R7 7%'f%1

V IFv P ve fel V. -. ^-' -.P' I , 1. o



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY

PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

.01

S%

,I-

*~~f~(* U~' S UU,'



REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKING
Unclassified ______________________

2a. SECURITY CLASSIACATION AUTHORITY I WITRISUTIONI AVAILABILTY OW REPORT
Approved for public release; distribution

2b. OECLASSIFICATO I DOWNGRADING SCHEDULE unlimited.

4. PERFORMING ORGANIZTION REPORT NUMBER(S) S. MONI1TORING ORGANIZATION REPORT NUMBER(S)

Technical Report 0-87-2

"a. NAME OF PERFORMING ORGANIZATION RbOFFICE SYMBOL. 7a. NAME OF WMTORING ORGANIZATION
1JSAEWES, Instrumentation *~~i
ServicesDivision I ____________________

6. ADDRESS (01)', Sta. OWd WVC*) Tb. ADDRESS (Oup. SUeM O AP WCO
PO Box 631
Vicksburg, MS 39180-0631

Is NAEO BDNIPNORN FIESMO . PROCUREMENT INSTRUMENT IDENTIFICALTION NUMBER
ORGANIZATION a ppocANI.)%

St. ADDRESS (011Y, SISate, nd tC41de) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT TASK WNORK UNIT
ELEME1NT NO0, O NO. rCCESSION NO.

11 TITLE (&Who* S@iFulY 0aSWCatkm

Networks of Markovian Queues

12. PERSONAL AUITHOR(S)
Franco, Raphael A., Ar. '.*4.

13a. TYPE OF REPORT 13b. TIME COVERED 14. W~E Of REPORT (Voaw, Moen&. Day) S. PAGE COUNT..
Final report FROM TO May 1987 300 1 .

16 SUPPLEMENTARY NOTATION
Available from National Technical Information Service, 5285 Port Royal Road, Springfield,

17 22161. CODES 1. SUBJECT TERMS (Cononue an rsw.m .1 naceaay and sdewf v by 610ck numbe)

FIELD GROUP suB-Roup Mar*-) a processes (LC)'
Queueing theory- ftCYf

IStochastic processes,'1LC)
19 ABSTRACT (Continue on ,f*II if ReffUW)' and .s11004 6V P1ock "60F4)
-'There is a recognized need to make the subject of queueing network theory less esoteric.'
The engineer who is faced with an application often does not understand the concepts. The .f
likely result is that he either cannot apply th at all or does so invalidly. In any
event, he is faced with a formidable research ttask. This work is intended to make the task
less difficult and the subject less esoteric. )tMuch of the thrust of this text was to ex-
amine queueing network theory as presented in the literature, to reinforce the results by
independent justifications, reduce the ambiguity resident in some explanations, and present
nuerous corroborating examples where none were found. The result is that the existing lit-
erature, in the area covered, has been expanded in explanation, critiqued as to usage, and
delineated as to limitations.J. *

20. DISTRIBUTION 'AVAILASITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
CIUNCLASSIFIEDOUNUMTUD C3 SAE As RPT. C cUSERS Unclassified -

22a, NAME OF RESPONSIBLE INDIVIDUAL. 22b. TELEPHONE th'u Area C018 22c. OFFICE SYMBOL

00 FORM 1473,Be4 MAR 83 APR edmon emay be used untl efthaustd. SECURITY CLASSIFICATION OF THIS PAGE

All o~whet~m nare obwlels. Unclassified I
:% % P.

% % N I
*e Z~.- *,k* Z Z Z*1%'e*X



PREFACE

This report was originally submitted to Mississippi State University in

partial fulfillmentof the requirements for the Degree of Doctor of Philosophy

in the Department of Electrical Engineering. 1r,

This report was written by Raphael A. Franco, Jr., of the Instrumentation

Services Division (ISD), US Army Engineer Waterways Experiment Station (WES), A

under the direct supervision of Mr. George P. Bonner, Chief, ISD.

Many people contributed to the completion of this work, both directly

and indirectly. First and foremost the author would like to thank Dr. John K. 0

Owens for his encouragement, for without it, it is doubtful that the work would

have been completed. Credit for the instigation of the research belongs to

Dr. Frank M. Ingels, who provided advice and encouragement throughout the

effort. The author would also like to express his gratitude to Mr. Bonner for

allowing time away from his job in order to finish the project. In addition,

the author wishes to express thanks to the National Aeronautics and Space _ .-

Administration for partially funding this work. And last, but not least, 1 r

special thanks go to Mr. Nick Lavecchia for proofreading this document and

helping to get it into final form.

Commander and Director of WES was COL Dwayne G. Lee, CE. Technical

Director was Dr. Robert W. Whalin. V

Accesion ForrNT IS _GRA&I 
,

Unannounced 
% '

!A wv i i a n d / o r 
" ,

Dist I Spocil- -

g ", 
Jr . •

" . .

% % %

Lal K9.



TABLE OF CONENTS

PREFACE ...................................................... i
LIST OF-FIGURES ........................................... vi
LIST OF TABLES ............................................... ix

Chapter Pase

1. INTRODUCTION TO QUUEING T== 01

1.1 Introduction ....................................... I 1
1.2 Steady-State and Equilibrium .......................... .
1.3 Specification of Queueing Systems ..................... 6
1.4 Shorthand Notation for Q eueing Systems .............. 8
1.5 Little's Law .......................................... 9
1.6 Utilization ...................... ..... .... ........ 11
1.7 Outline of Contents ................................... 13

2. MARKOV PROCESSES

2.1 Random Variables ................................... 14
2.2 Stochastic Processes . .. ..... ........ 14
2.3 Introduction to larkov Processes .................... 16
2.4 Discrete-State, Discrete-Time, Markov Processes ..... 16
2.4.1 Limiting Probabilities .............................. 2 9
2.5 Discrete-State, Continuous-Tine, Markov Processes ... 22
2.5.1 The Poisson Process *............*............. 32
2.5.2 Continuous Tine - Limiting Probabilities ............ 34

3. FLEMENTARY QUEUEING SYSTEMS IN EQUILIBRIUM %

3.1 Introduction ................ 37
3.2 Birth and Death Processes ............................. 37
3.3 Birth and Death Processes and Elementary

Queueing Systems .................................... 43
3.4 Mil/1 ....... .................... ............ ... .. ... 44
3.5 M//m - Finite Number of Servers ............. ...... so
3.6 M/M/- - Infinite Number of Servers .................. 57
3.7 /M/il/K - Finite Storage ................ ......... 59
3.8 M/M/I//M - Finite Customer Population - Single Server.. 613.9 Other Elementary Queueing System .0................. 64 "e

4. QUEUEING MODELS WITH GENERAL SERVICE OR ARRIVAL PATTERNS

4.1 The M/G/l Queueing System ......................... 
65 , 1

ii

%:



TAME OF CONTENTS (CONTINUED)

Chapter Pale

4.1.1 Comments on the Steady-State Solution and
that of the Embedded Marko Chain ................... 73

4.1.2 M/D/1 - Poisson Inputs -Constant Service time *....... 74
4.1.3 M/G/1 Nonpreouptive Priority ........................ 81
4.1.4 Coents on the M//n Queueing Model ................. 89
4.2 The G/M1 Queueing System ............................ 89
4.2.1 Comments on the G/im/u Queueing Model ................. 97
4.3 Coments on the Solution of a Semi-Markov

Process and the General Time Process ................. 97

4.4 Coments on the GIG/1 Queueing Model ................. 98
4.4.1 Comments on the GIG/n Queueing System ................ 100
4.5 Concluding Remarks ................................... 101

S. INTRODUCTION TO MARKOVIAN QUEUEING NETWORKS

5.1 Introduction to Queueing Networks .................... 102
5.2 Burke's Theorem ...................................... 104 .
5.3 Open Queueing Networks and Jackson's

Product Form Theorem ................................. 106
5.3.1 Open Networks with Feedback .......................... 112
5.3.2 Local Balance ..... a. ................................ 114
5.3.3 An Application of an Open Queueing Network ........... 116
5.4 Arrival Rates Dependent on the Number of Customers

in the Network ....................................... 121
5.3.1 The Constant Arrival Rate Case ....................... 125
5.3.2 Closed Networks ...................................... 127 *

5.4.3 An Application of Closed Queueing Networks ........... 130
5.5.4 Open Networks with Finite Storage Capacity ............ 137
5.3.5 Service Rates and Subsets of Service Centers ......... 142

6. ADVANCED QUEUING NETWORKS

6.1 Customer Classes ........................ ......... 147
6.2 Nonezponential Service Times ......................... 150

6.3 Service Disciplines .................................. 157
6.3.1 Preemptive and Nonpreeomptive ......................... 157
6.3.2 First-Come-First-Service a............0.00.....0..0..0 158
6.3.3 Priority ........................ 158
6o3.4 Round-Robin ...................... 158 '

6.3.5 Processor-Sharing ................................... 159
6.3.6 Last-Cone-First-Serve-Preemptive-Resune .............. 159
6.3.7 Infinite Servers .................................... 160
6.4 The State Space ..................................... 160
6.5 The Steady-State Solution ........................... 164

i ii '. .'.a."

%j% p, s

a,~~ asdo%
2r, IL It. Jr J& A

%ik &? .- 2 &kd Net~~.pv -r~ *- : e ;6e,



TABLU OF CONTENTS (CONTINUED)

Chapter Page

6.5.1 A Now lustification for Networks with Service
Centers of Type FCFS, PS, and 1S ..................... 167

6..2 Locl Balance ...................... 172

6.5.3 Marginal Distributions ............................... 179
6.5.4 Open Networks with a Constant Mean Arrival Rate ...... 185
6.5.6 Load Dependent Service Rates and Multiple Servers .... 189
6.5.7 An Example of Queneing Networks X

with Multiple Classes ............. 193

7. CLOSED AND MUED Nl1rOWS

7.1 Introduction ........... ................ 200
7.2 Closed Networks .................................... 203
7.2.1 The Arrival Theorem .................................. 206
7.2.2 The Throughput Theorem ................... ....... . 207
7.2.3 Single Chain - Load Independent - Closed Networks .... 208
7.2.4 Single Chain - Load Dependent - Closed Networks ...... 213 -

7.2.5 Load Independent - Multiple Chain - Closed Networks .. 218.Ile
7.2.6 Load Dependent - Multiple Chain - Closed Networks .... 231
7.3 Mixed Networks ...................................... 243
7.4 Closed Queueing Networks without Product Form

Soltions .. . . . . . . . . . . . . . . . . . . . . .248 +

S.* CONCLUJSIONS

8.1 The Deceptive Service Center ......................... 256 i

8.2 Foundation ........................................... 257
8.3 Contributions ........................................ 257
8.4 A Characterization of Networks

with Product Form Solutions .......................... 261
8.5 Approximate Solutions to Queneing Networks ........... 263
8.6 Review of Latest Textbooks ........................... 264
8.6.1 Textbook by Stuck and Arthurs ........................ 264
8.6.2 Textbook by aond and O'Reilly .................... 266
8.6.3 Textbook by Schwartz ................................. 267
8.3.4 Final Remarks ........................................ 269

Appendix Page

A. SUPPLJ1XDTA LOCAL BALANCE PROBLEMS
A.1 FCFS with Two Classes ............................... 271
A.2 LCFSPR with Two Classes .*... . ....... ....... ...... 274
A.3 LCFSPR with Two Exponential Stages ................... 277

iv

:%

k .-
m V - u . " 71

'
+ 

C, 
" +u + I - + +' m . m q " " - ee '



TABLE OF COtflENTS (CONTINUE)

Append ix Page

3B. SOURCE LISTING OF KVA PROGRAM FOR MULTIPLE CHAIN,
LOAD INDEPENDENT NETORKS . .************. **. ... 281

3.ffUMCES AND BIBLIOGRAPHY . ***********.. ...... 9.... 285

% 
.P 

~

I.-

% .,

% I'% % % %



LIST (OF FIGURES

Figure Page

1.1 A Typical Service Center I................................. 1

1.2 Example of an Open Queueing Network Model ................. 3

1.3 Example of a Closed Queneing Network Model ................ 4

1.4 Plot of Customers versus Time in a Typical Service Center 9

3.1 State-Transition-Rate Diagram of the Birth and Death
Process ............................... ......... .... 42

3.2 State-Transition-Rate Diagram for the M/K/1 System ........ 45

3.3 Normalized Mean Response Time Versus Utilization for the
/M/1 and DID/1 Systems ................................... 49

3.4 Mean Number of Customers Versus Utilization for the K/M/1
and D/D/1 Systems .... .. 51....... .. ....... $1

3.5 State-Transition-Rate Diagram for the M/M/m System ........ 52

3.6 Mean Number of Customers Versus Arrival Rate for the
K/M/u System .............................................. 55

3.7 Mean Response Time Verses Arrival Rate for M/M/m System ... 56

3.8 State-Transition-Rate Diagram the for M/M/- System ........ 57

3.9 State-Transition-Rate Diagram for the K/Ml/K System ...... 59

3.10 State-Transition-Rate Diagram for the M/M/l//M System ..... 62

4.1 State-Transition-Probability Diagram for the M/G/1
System of.L.Vers.s..for../D/.and.K/K/i.................. 67

4.2 Curves of L Versus p for M/D/i and M/K/1 .................. 77

4.3 Curves of R Versus p for M/D/1 and M/M/i .................. 78

4.4 Curves of L Versus p for M/D/1 and M/M/I ............... 79

4.5 Curves of Tq Versus p for M/D/X and M/MIX ......... so .

4.6 Curves of L L2  L3 and for a /MK/1 Priority System %
with Three Kstomer Classes ..... 87

Vi

V. % . . .. %

. l; i ?,;.',, '.% % ' %. % .% % .v .%." ,V_, ,2_'.% ';,.,.,, %.'¢..'¢ .,'.,-. ,".",'.. ._,". , .' .. ,-_,-...-." i



LIST OF FIGURES (CONTINUED)

Figure Page

4.7 Curves of i, 12, R3 and R for a M/M/l Priority
System with Three Customeraasses......................... 88

4.8 Cuvsof Li. ,L2- L3 and LTfor a M/D/i Priority System
with Threecustomer Classes ............................... 90

4.9 Curves of R1 , R2 13 and R for a M/D/i Priority
System with Three Customera Casses......................... 91 oo

4.10 State-Transition-Probability Diagram for the G/M/i

5.1 An Open Queueing Network .................................. 103 -.P.-

5.2 A Closed Quneueing Netork ................................. 103

5.3 A Simple Tandem Quoueing Network .......................... 104 %

5.4 An Open Queueing Network with Feedbaok .................... ill

5.$ A Non-Poisson Input Sequence .............................. 113

5.6 Open Queueing Network of a Computer ................... . 117

5.7 Closed Network Central Server Model ....................... 131

5.8 State-Transition-Rate Diagram for the Central Server
Model with Three Jobs ............................... . ... 133

5.9 Equivalent M/M/1/K* System ................................ 138

5.10 Equivalent M/M/l//MSystem ................................ 140 .

6.1 Network with Two Service Centers and Three Classes ........ 148 6

6.2 Closed Network with Two Chains ............................ 148 1

6.3 An Open Network with Two Chains .......................... 149

6.4 Mixed Network with Two Chains ............................ 150

6.5 Coz's Method of Exponential Stages ........................ 152

6.6 Example of Coz's Method of Exponential Stages .15.. 154 -

vii

%d

-IL



LIST OF FIGURES (CONTINUED)

Figure Palo

6.7 Notation Required to Incorporate Cox's Method of
Exponential Stages Into Queueing Networks .................. 156

6.8 An Arbitrary Queueing Network ............................. 168

6.9 Blow-up View of Service Center No.3 ....................... 168

6.10 Equivalent Network of Figure 6.8 .......................... 169
i.

6.11 Equivalent Network of Figure 6.9 .......................... 169

6.12 Service Center with Two Classes............................ 173 d.

6.13 State-Transition-Rate Diagram for Type PS
Service Center with Two Classes ........................... 174

6.14 PS Type Service Center with Two Customer Classes .......... 182 .

6.15 Model of a Comuniaotion System .......................... 194

6.16 Classes Required for Routing with Multiple Sources ........ 195

6.17 Classes Required with an Aggregate Source ................. 196

7.1 Example of a Load Dependent Network ....................... 215

7.2 Load Independent - Multiple Chain Closed Network .......... 222

7.3 Example of a Mixed Network ....... .......... .............. 244

7.6 Closed Network Without Product Form Solution ............. 249

8.1 A 'Simple' Service Center ......... * .......... 256

A.1 Service Center with Two Customer Classes .................. 271

A.2 Service Center with Two Exponential Stages ................ 277

1I~e

viii

%,.

% . *-%" . . . . . . . % . ..



LIST OF TABLES

Table -Page

4.1 Comparison of M/D/1 and I/N/l Equations ..... ........... 76 'V

5.1 Parameters for Figure 5.6 .................... ......... 117

5.2 Parameters for Figure 5.7 ................................. 131

7.1 IVA Algorithm For Single Chain, Load Independent,
Networks ....... ....... ........ 04....... . .. . .......... 210 .

7.2 Description of Service Centers in Figure 7.1 .............. 215

7.3 NVA Algorithm For Multiple Chain Load Independent
Networks ........ ...... ......... ....... ........ ....... 220

7.4 Description of Service Centers in Figure 7.2 .............. 222

7.5 Description of Service Centers in Figure 7.3 .............. 244

ixi

% %t



CHATER 1

INTRODUCTION TO QUEUEING TEOEM

1.1 Introduction

A queue is a waiting line of customers at a service center.

Depending on the service center, service is provided by either a single S

server or multiple servers which operate in parallel. Figure 1.1

depicts a typical service center. Customers arrive at the service

center, wait in line for a server to become free, receive service, and

depart. For a service center to be stable, the mean demand for service

cannot be greater than the capacity that can be provided.

However, spurious arrivals and statistical fluctuations in service

requirements can temporally cause demand to exceed the capacity. Then

this occurs, a queue of waiting customers will form.

I I S

SERVERS
I I"

VI I .

ARRIVING ..- ... jll . 1 DEPARTING
CUSTOMERS I ( I CUSTOMERS

I QUEUE Q

SERVICE CENTER

Figure 1.1 A Typical Service Center.
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The purpose of a queueing model is to predict the performance of a

physical system in which there is contention for resources. The

resources are represented in the model by the servers. Any realistic

queneing model must incorporate statistical parameters. For example, it

is usually not possible to predict with certainty when the next

customer will arrive or what his exact service time will be. However,

it is often possible to assign probabilities to possible values or

continuous intervals of possible values. That is, these parameters are

usually random variables that can best be characterized by probability

distribution functions. Since the parameters that describe a queueing

model are random variables the performance parameters are also random

variables. Thus, queneing models are used to answer probabilistic--

questions such as: what is the probability that a service center will .Moe

have k customers at time t, or what is the probability that the waiting

time of an arbitrary customer is less than some fixed value x?

Probably the best way to illustrate a queueing model and

demonstrate its purpose is by example. Figure 1.2 is a model of a small

batch computer system. The labels on the arcs are routing

probabilities. It is assumed that the critical resources are the

central processing unit (CPU), a hard disk. and a floppy disk. These

are represented in the model by single server service centers. A

customer or Job arrives from outside the system and waits in a queue at

the CPU for service. After receiving some service at the CPU. the job

requires a hard or floppy dish operation before it can proceed (the %

probability that it needs the hard disk is O.8, and the probability it

2

*%*'V P€., : o , .- , . . : . ' : - . . * . • . -; , , .. . • .. .. .. .. . ...... . . . .
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SOURCE SINK

F LOPPY

Figure 1.2 Example of an Open Queueing Network Model.

needs the floppy disk is 0.2). Since these operations are usually slow

compared to those at the CPU. the CPU releases the Job and starts to

work on another one. The released job proceeds to the queue at the

appropriate disk and waits for service. After receiving disk service

the Job either exits the system or return to the queue at the CPU for

more service (the probability it exits the system is 0.1. and the

probability it returns to the CPU is 0.9).

In order to analyze such a model the arrival process, the routing

probabilities, the service demand, and the order in which jobs are

served must be described. Some of the performance parameters 
that can ,E

be obtained from the model are : the mean waiting time, the mean "'

response, the mean throughput, the mean number of Jobs at each service

center, and the utilization at each service center.

3 1Nd
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The model is Figure 1.2 is classified as an open quouing network

model. The word network refers to the fact that there is more than one

service center in the model. The word open is in reference to the

arrival process. In an open queueing model customers arrive from

outside of the system and leave the system once their service demand

has been met.

interactive computer system. The structure of the model 
is the same as

TERMINALS DISK

CPU 
'." ,2

Se ~. -S't

FLOPPY

Figure 1.3 Ezample of Closed Queueing Network Model.

the one in Figure 1.2 with the exception of how customers enter the

system. In this nodel there are a finite number of terminals. K, and it

is assumed that there is always one customer at each terminal. Thus,

once a customer's service demand is mot, he is immediately replaced by

a now customer. Clearly, the system is equivalent to one in which S'

.e % % l
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customers can neither enter or leave the system, and hence the name

closed. In addition, the system is self regulating in that is U
impossible for the mean service demand to exceed the capacity. if a

new customer trios to enter the system when it contains K customers, he

is simple turned away. Although the structure of this model is similar

to the one in Figure 1.2 the service demand and routing probabilities

are usually quite different. In addition, the parameter that one

usually varies in an open network is the arrival rate, whereas in a

closed network it is L

The focus of this text is queueing network theory, however before

one can analyze a network of service centers, he must first learn how

to analyze single service centers. The rest of the chapter and several

more are devoted to this.

1.2 Steady-State and Eauilibrium

Since a queueing model of a physical system is a probability

model, the number of customers in a service center at time t is 
a NL

discrete random variable. Lot N(t) denote this random variable and let

Pk(t) - P[N(t)=k]. That is, Pk(t) is the probability of finding k

customers in the system at time t. Pk(t) depends not only on the value

of t, but also on the number of customers in the center at t-0. For

small values of t, the number of customers in the service center will

be largely influenced by the number of initial customers. However, as t %

becomes larger the influence will become less, and after a sufficient

period of time the number of customers in the service center will

become effectively independent of the initial number of customers. The

5,~~~~~~5 .5'C.rWI NN. I d
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situation is very similar to those found in electrical circuits that

contain inductors and/or capacitors, and the same terminology is used.

The time dependent solution of Pk(t) is called the transient solution,

and the tine independent solution the steady-state solution.

The steady-state solution is denoted Pk and defined to be

'h" - In t) • (1.1)

Pk is the long-term probability of finding exactly k customers Is the

service center. It is important to understand that whereas P is no S.'.

longer an explicit function of t, the number of customers in a service

center will certainly change with time. That is Pk equals the long-term -

proportion of time that the service center contains exactly k
9.

customers. Pk is also often referred to as the equilibrium solution

because ultimately the flow of customers into a service center must

equal the flow of customers out of the service center.

Queusing theory focuses primarily on the steady-state solution. 04

This is not only because of the difficulties in obtaining transient

solutions, but also because the extra information contained in them is . -

of little use.

1.3 Suecification of Queueint Systems

As previously mentioned, before a service center can be analyzed

it is first necessary to specify the stochastic processes that describe
'.9'

the arriving customers, and the structure and discipline of the service .
0%

center. Generally the arrival process is described in terms of the .

00,
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probability distribution of the intertarival times (that is the times

between successive arrivals of customers at the service center). The

assumptions used in most of quesoing theory are that those intorarrival

tines are both independent and identisally distributed random

variables. Honce, they a11 have the same probability distribution

function (PDP) which describes the arrival process. The arrival process

is denoted by A(t) and is by definition:

A(t) P[time between arrivals j t]. (1.2)

In order to satisfy the assumptions of independent and identically ?5

distributed random variables, it may be necessary to partition the b

.A

arrival stream into classes of customers and define a PDF for each

class.

The second statistical quantity that must be described is the

service ties. It is usually assumed that the service times are

independent random variables all having the same PDF. The service time

PDF is denoted by 3(v) and defined to be:

B(T) - P(sorvice time -C]. (1.3)

Again it may be necessary to partition the customers into classes and V,

define a service time distribution for eack class.

One must specify a variety of additional quantities in order to

identify the structure and discipline of the service center. The first

of those is the number of parallel servers at the service center.

Another is the available storae capacity to hold additional

customers. Often this quantity is assumed to be infinite. Still another

specification is the customer population. That is the maximum number of

7 N
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customers that *a& simultaneously require service. Again this quantity

is often assumed to be infinity. In addition to these it may be

nooessary to specify the service discipline or order in which customers

are served. Typical service disciplines are first-come first-served

(]CFS), last-cone first-served (LKlS), processor sharing (round-robin),

and priority.

1.4 Shorthand Notation for Queueing Systems

The shorthand notation A/B/m//IK is commonly used to describe a

queueing system consisting of a single service center. lore A describes

the interarrival time distribution, B the service time distribution a

the number of parallel servers, K the system's storage capacity, and N -

the customer population. If any of the descriptors are absent, then it

is assumed that they take the value of infinity. Thus, if it is assumed

that the storage capacity and customer population are infinite, only

the first three descriptors are required. The following is a list of

woll-aeopted symbols for distributions:

K Exponential distribution (i.e.. Karkovian)

D Detorministic variable, a constant

Ek k-stage Erlangian distribution

k k-stage hyperexponential distribution

G General distribution.

For example, the notation K/D/i implies a single server system with

exponential arrivals and a constant (deterministic) service time.



1.5 Litle'Law

Probably the simplest, yet the most important formula, in queuneig

theory is Little's law [LITT611. It states that the mean response time

R, is equal to the mean queue length L, divided by the mean arrival

rate X. That is,
L (1.4)

To show that Little's law is valid, consider Figure 1.4 which is a

plot of the number of customers in a service center versus time.

tA

NMt

4

3

2

Figure 1.4 Plot of Customers versus Time in a Typical Service Center.

Let

N(t) - the number of customers in the system at time t,

&W - the number of customers that arrive in the interval [0o,].

4W - the area under the curve in interval [0,T].

9

%~ % ".% .
% %



During the interval [0,:] the mean arrival rate is

S- .SIe. .)(1.5)

and the mean number of customers in the system is

L IfN(t) d
0V

The area under the curve during this interval equals the total number

of oustome r-seconds spent in the system by the a(v) customers. If the

number of customers in the system at v equals the the number of initial

customers, then the mean time spent in the system per customer is

R (1.7)

Hence,
L - (:) :_.
"-- a(:) a(:--") .).

The stipulation that the interval be chosen such that the number

of initial and final customers in the system be equal, is nothing more

than the steady-state or equilibrium condition. That is, over the long- .€ _t

run the number of customers that flow into a system must equal the

number of customers that flow out of the system. This implies that the 6

throughput equals the arrival rate. Thus Littles law can be also be

expressed as

S(1.9)

where T represents the throughput. There are no standard notations in

10 IIN.
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queueing theory, hence different authors use different symbols to

represent the quantities in Little's law. Although the same symbols

often appear in usage by different authors, they are used to symbolize

different quanties. In order to avoid confusion, the second expression

will almost always be used in this text since the letters have

intuitive meaning.

It is important to emphasize that Little's law does not depend on

any specific assumptions regarding the arrival or service time

distributions, nor does it depend on the number of servers or the order %

in which customers are served. It holds for any system in which

customers arrive, wait for service, and depart. It does not matter if

the system is composed of a single service center or a collection of .o

service centers. In fact Little's law can even be applied to parts of a

service center. For example, if Lq is the number of customers waiting

tbe served and Vq the mean waiting time, then L q = )VWq.

1.*6 Utilizao

The utilization of a service center is the average amount of

service required divided by the maximum amount of service that can be .4

provided. If the arrival and service processes are independent of each

other and of the number of customers in the system, then on the average

X customers arrive per second, and each customer requires E[S] seconds

of service. Thus the average amount of service required per second is

EESJ. Now for a single-server system, the maximum amount of service

that can be provided is one second of service per second. Hence, the .

utilization (denoted by p) of a singlo-server system is

11'
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p - X.(S] . (1.10) ell
For a service-center with a servers the maximum amount of service that

can be provided is m second* of service per second. Therefore, the

utilization for a multi-server system is

.E[S(1.11)

m% ,.1

Clearly, for a single-server system, the utilization is the

proportion of time the server is busy. Similarly, for a multi-server

system, utilization is the average proportion of time the servers are

busy. Since Pk is the long-run proportion of tine the system contains k

customers, PO is the long-run proportion of the time that the system is .

empty or not busy. Now since the summation of the Pk's over all k must

equal one, the proportion of time that the system is busy is 1-PO. Thus

for a single-server system utilization can be expressed as

p - 1-P0 . (1.12)

Similar results can be obtained for a multi-server service center. More

precisely,

1 - PO -(1.13)

This follows from the fact that when the service center contains k

customers (I-k)/m is the capacity of the service center that is not

utilized. The last two equation for p are more general than the first

two, in that the arrival rate does not appear explicitly and,

therefore, it may be a function of the number of customers in the

system. .. v

12 7
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Obviously, the utilization of a service center must be less than

one. That is.' for the system to be stable, the mean service demand

cannot exceed the capacity of the system to provide service. If the

system is not stable, then as t approaches infinity, the queue length

grows without bound and the limiting probabilities do not exist.

"
1.7 Outliule of Contents ,

The purpose of this short chapter was to introduce queueing theory

and some of the terminology that will be used in the following

chapters. The next chapter is a mathematical treatment of Markov

processes. The tools developed in this chapter form the basis of

quouoing theory analysis. Chapter 3 is the analysis of Markovian

queues, M/KIm. Chapter 4 is the analysis of somi-Markovian queues, ." -'

K/G/1 and GIN/1. Chapter S is an introduction to queueing network

theory (Jackson type networks). Chapter 6 is advanced queueing network

theory. Chapter 7 is computation algorithms for closed and mixed

networks. Finally, Chapter 8 points out the limitations of queueing

theory and open areas of research. '

"%
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CHAPTER 2

KARKOV PROCESSES

2.1 Random Variables

A random variable, X, is a variable whose value depends on the

outcome of a random experiment. The outcome of the experiment assigns a ".

value to I The set of all possible outcomes of an experiment is known -,

as the sample space of the experiment and is denoted by S. Each outcome

'' in the set S is referred to as a sample point. Thus a random

variable is nothing more than a function defined on the sample space of

a random experiment. Therefore, the symbol for a random variable should

be (X(s):ssS), denoting the dependence of X on the sample space, but it

is customary to use the short hand notation X. -*

2.2 Stochastic Processes

A stochastic process, (M(t,s):teT,ssS) is a family of random %

variables that describes the evolution through time of some process.

The symbol, (X(t,s):tsT,ssS), indicates that it is a set-function of

two variables. The set T represents time, and is often referred to as

the index set since for each taT (a specific value of t) It,s)

reduces to a random variable (note that in this chapter and only in

this chapter, the variable T will represent time and not throughput).

Thus, the variable t induces a set or family of random variables. The r._.-

set S represents the sample space of these random variables, and s is a

sample point in S. Just as it is customary to use the symbol X for a

14 "
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random variable rather than (X(s):ssS), it is also customary to drop

the a in the notation of a stochastic process. That is, the traditional

symbol for a stochastic process is (X(t):t*T) [PARZ62], [THOM691,

[ossso.

There are two other notations that are used to denote special

stochastic processes. If the set T is finite or countable, then the

process is said to be a discrete-time stochastic process. A countable

set is one in which there exists a one-to-one correspondence between

each element of the set and the nonnegative integers. Therefore, a

discrete-time stochastic process is a sequence of random variables

indexed by the set T. When the sequence is infinite but countable, the -

process is often represented by (Xn,mnO.1,2,...). If on the other hand,

the set T consists of all points on a continuous interval of the time

axis, the process is called a continuous-time stochastic process. If

the interval consists of the entire positive time axis, then frequently

the short hand notation X(t) is used to represent the process.

Stochastic processes are also classified according to the set S.

The set S is called the state space, and it consists of all possible

values (states) that the random variables may assume. If S is finite or

countable, the process is said to be a discrete-state process.

Otherwise it is said to be a continuous-state process.

If Xn i, then the process is said to be in state i at time n, or

for the continuous-time case if 1(t)-i the process is in state i at

time t.

15



2.3 Introduction to Xarkov Prooesses

A Marko process is a stochastic process that has no 'memory'.

This means that information about how the process reached a certain

state plays no roll in assigning probabilities to the next or future

states. Only discrete-state Marko processes will be discussed in this

text. I

2.4 Discrete-State. Discrete-Tize. Karkoy Processe

A discrete-state, discrete-tins, Marko process is a stochastic

process (In n0,l,2,...) such that:
n!

P(In+l=J (~nn 1=m 1 ,...,1 1 IiXoilo] = P[In+i=Jllnmin] (2.1) -

for all states i 0 ,il,...,in_1.1, ji and all nO. In other words, the

probability of any future state In+l, given present state Zn and the
-..

past states XOn-l,..X',X 0 , depends only on the present state and is

.1independent of the past states. Discrete-time Markov processes are

often referred to as Markov chains. .

If the probabilities are tine-invariant, that is independent of n.

then the process is referred to as a homogeneous Markov process. For a

homogeneous Markov process, let Pij denote the probability of going

from state i to j in one step. That is,

PJ P[ In+iJ IXn'J) (2.2)

The probability of going from any state to another state in one step

can be described by the matrix

167 ]
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P00 Po P02  .. Po0

(P] m •

[P] . .(2.3)

whore the row index is the present state and the column index the next

state. The matrix [P1 is called the one-step transition matrix.

Lot pi 2 denote the probability that a proces gos from state i ,.

to state J in two steps. In order to So from state i to state j in two

steps, the process must go to some intermediate state k in the first

stop and proceed to state J in the next step. Therefore,

-- ~ *~,5-.

Pij 2  
P Pkj 

. "k-0.

P io POJ + Pil Plj + Pi2 P2j + 00" (2.4)

This equation can be interpreted as the weighted average of going to

state j in one step, given the process was in state k, weighted by the

probability of being in state k. The two-step transition matrix,

denoted by [P21, can be found from the one-step matrix [P] by observing

that the two-step transition Pij 2 is the sun of the elements along the

ith row multiplied by the elements along the Jth column. Hence, the

two-step transition matrix is Ii
[p21 . [p](p] = (p]2 . (2.5)

It follows that for a process to go from state i to j in n+m

steps, it must go to some intermediate state k in n steps and proceed '%

to state 3 in a steps. Therefore,

17N
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The last equation is called the ChamanKoloorov equation. When n-i,

the equation is referred to as the backward Chapman-Kolmogorov

equation, since it is written at the backwards most end of theU

interval. More precisely, the backward Chaps an-Kolm oSorov equation is

-jl U ik Pkj*
k 0

- LiO POJ' + pil Plj' + Pi2 p2j' + (2.7)

Note that 11ijl1  is the sun of the elements, along the ith row of the-

one-step transition matrix, multiplied by the elements along the jth
*.~

column of the in-step matrix. gence*,

[P1 'mJ - [P] [pal. (2.8)

If m equals two, then the three-step transition matrix is just the

one-step matrix times the two-step matrix, which is the one-step matrix

raised to the third power. Recursively it follows that the nth-stop

matrix is just the one-step matrix raised to the nth power. That is, -

(Pi- (pin (2.9)

The same results can be derived by letting in-i. More precisely,

-j Pika Pkj

k-

or~ ~ inmti om~n P + P n P1  + P ~n P2  + *(2.10)N
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[pW+l. [pl [p] . (2.11)

When mn the -Chapsan-Kolmogorov equation is referred to as the forward

Chapmas-rolmogorov equation, since it is written at the forward most

end of the interval.

The unconditional probability of being in state J after n steps,

denoted by P is the weighted average of going to state j in n steps,

given the initial state was k, weighted by the probability of state k

being the initial state. Therefore,

Pin Pk Pk pn

k-0

=P00 P0Jn + P10 Pn +P2 0 p2 n  "("

wherek is the probability of initially being in state k. Let V0

equal the vector of initial state probabilities, and let yn equal the

vector of state probabilities after n-steps. The unconditional I

probabilities in vector form are

Vn = VO (pn] (2.13)

where V0 = [P 0
0 ,p 1

0 ,P 2
0 , "' ' ] and Vn _ (p 0np nP 2 n,,,

]. Thus, given

an initial state probability vector and the one-step transition matrix,

one can find the n-step probability vector, that is, the probabilities

of where the process will be n steps after start-up.

2.4.1 Limiting Probabilities

When a process first starts up, its initial state certainly has a

large influence on the current state, but what about after the process

19



has been operating for a long time? It seems reasonable to expect that

as time increases the influence of the initial state should decrease.

More specifically, does the limit of Pin as n approaches infinity,

converge to some value, say Pj, which is independent of the initial

state, and do the Pj's form a probability system? The answers to these

questions are that it depends on the process.

In order to define when the limiting probabilities exist, it is

first necessary to discuss some terminology of Markov chains. A Markov

chain is said to be irreducible if every state can be reached from

every other state. Nore precisely, for each pair of states (i and j)

there must exist an Integer m ( which may depend upon i and j ) such -

that Pijm 0 0. Furthermore, state i is said to have period n if, when

in state i, the only possible steps at which the process can return to

state i are n,2n,3n,...,. If n - I then state i is aperiodic. It can be

shown that all states of an irreducible Markov chain have the same

period [ROSS8O].

The following theorem states when the limiting probabilities

exist: (1) In an irreducible, aperiodic, homogeneous, Markov chain the

limiting probabilities

P-lim P - i (2.14)
J n-w J n-e

always exist and are independent of the initial state probabilities.

(2) If the chain is finite, then the limiting probabilities form a

probability system. That is,

0 P P 1 and P = 1 for all j. (2.15)

20
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(3) If the chain is infinite, the limiting probabilities may or may not % %

form a probability system, but if they do not then P = 0 for all J.

The interested reader is referred to [FELL66] for a proof.

Assuming that the limiting probabilities do exist, it is easy to

show that they are independent of the initial state. The unconditional

probability that the process is in state J at step n can be expressed

as

P - P ~k 1 Pkj (2.16)

or in vector form

Vn - Vn- 1 [P] . (2.17)

By taking the limit of these equations as n approaches infinity, one,

arrives at

P- =koPk PkJ (2.18)

or in vector form
V - V (P] (2.19)

eV [P0,PP 2 ,'"] . Therefore, the limiting probabilities are

independent of the initial state of the process. Equation (2.18) or - -

(2.19) along with the conservation of probability equation (summation

of P 's equal one) uniquely determines the limiting probabilities when

they exist.

It can also be shown that when the limiting probabilities exist

then Pj _ in p n .(2.20)
Sn- ao iJ

The equivalent statement in matrix form is that as n approaches

infinity the n-step transition matrix approaches a matrix in which each

21
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row approaches the vector V. That is,

i. [pal I V] (2.21)

The limit of Equation (2.13) as a approaches infinity is

V -V 0 ham [pal (2.22)

The initial state vector, VO appears explicitly in this equation, andU

since it is always true that the elements in VO form a probability

system, then the only way that the equation can hold and be independent

of V0 is if

lim (puj M V. (2.23)

The limiting probabilities are also called the steady-state

probabilities, since they represent the states of the process 
after thee%

effects of the Initial conditions have died out. It Is Important to 1

understand that as n approaches infinity the process still moves from

state to state, and hence the limiting probabilities equal the long-run

proportion of time the process spends in each state.

2.5 Discrete-State. Continuous-Time. Iarkov Processes 4

A discrete-state, coutinuous-time Karkov process is a stochastic .

process (X(t),t201) such that for all s,t20 and nonnegative Integers

P[I(t+s)ijl(s)ii,I(u).mz(u),O.Ju(sJ PEi(t+s)uj1i(s)-iJ (2.24)

That is, the probability of the future I(t+s)inj given the present X(s)

and past X(u),Oju~s. depends only on the present and is independent of

22
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the past. If in addition,

P[I(t+s)=Jlx(s)Mi] (2.25)

is independent of s. then the process is said to be stationary or

homogeneous. Only homogoneous Markov processes will be considered in

this text.

Since the past history includes how long the process has been in

current state, the definition requires that the amount of time in the

current state and the next state visited must be independent random

variables. The definition also requires that if Ti is the random '

variable representing the amount of time in state i, then the

probability distribution function (PDF) of Ti must be 'momoryless'. In

other words, the amount of time in state i cannot affect the

probability of when the the process will depart state i. The momoryless

statement in mathematical terms is
.. '

P[Ti>t+sITi)s] - P[Ti)t] • (2.26)

The only P1W which has this property is the negative exponential.

Filt) - P[Tit] = l-e- I1 (2.27)

where l/Ci is the expected value of Ti. The subscripts indicate that Ti

may depend on the state i.

The following shows that this distribution function has the

momoryloss property. The condition in Equation (2.26) is equivalent to "

P[Ti)t+sITi)s] P(Ti)s] - P[Ti)t] P[Ti>s] (2.28) -'

or
P(Ti>t+sI - P[Ti)t] P[Ti>sJ . (2.29)
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Since

eince •-e • • is (2.30)

it follows that the negative exponential satisfies the condition in

Equation (2.29). and therefore has the memoryless property.

The following proves that it is the only distribution function

with the memoryless property. The derivative of Equation (2.29) with

respect to 8 is

dP[Ti>t+sl " P[Ti>t] dP[Ti>s (2.1)

ds ds

For any PDF
dP[Ti~sJ d(l-P[Tijs])

m -fi(d) (2.32)

where fi(s) is the probability density function (pdf). Substituting -

(2.32) into (2.31) yields

dP[Ti>t+sJd8 = fils) P[TI~t] ( 2.33), %!

ds

By dividing both sides of this equation by P[Ti>t] and letting s-0, one

obtains
dP[Ti>t]

- fi(0) ds (2.34)

P[Ti>t] .' 40

It follows by integrating from 0 to t that

Log2 P[Ti>t] - -fi(0)t , (2.35)
- fil0)t

P[Ti>t] = • (2.36) .

-fi(0)t ,::.
P[Tijt] - 1- • O . (2.37)

Thus, the negative exponential is the only PDF with the Imemoryless'
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property.

This connection is so strong that the definition of a homogeneous

continuous-tine Markov process can be given in terms of it. Namely, it

is s stochastic process having the properties that each tine it enters

state i

(1) the amount of time it spends in state i is exponentially

distributed with mean 1/i, and

(2) when the process departs state i, it enters state j according

to probability Pij" Of course, the Pij must satisfy

Ptl W 0 for all I

Spij -I for all i (2.38)-

For a homogeneous, continuous-time Markov process, let Pij(t)

denote the probability of going from state i to state j in time t. More

precisely,
Pij(t) - P[X(t+s)-J1X(s)-i] for st 0 . (2.39)

Pij(t) is analogous to the discrete-tine n-step transition probability

Pijn. The difference is that the discrete parameter n has been replaced

by the continuous parameter t. In other words, Pjn is the probability-p

of going from stats i to stats j in n-steps, and Pij(t) is the

probability of going from state i to state J in time t.

Since by definition Pij(t) is independent of s, then Pij(t) is

also the conditional probability that the process is in state j at time

t, given that it was initially in state i at time 0. That is, . "

Pij(t) = P[X(t)-JtI(O)-i] . (2.40)
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Let PJ(t) denote the unconditional probability that the process is in

state j at time t. More precisely,

4'.

i-0

It follows that %

Pi(t)- P Mj t)Pi(O)
'LpiLi=O

- P0 10IP 0J(t) + Pl(O)Plj(t) + P2 (O)P2j(t) + "'" . (2.42)

As in the case of the discrete-tine Iarkov process, these probabilities

can be expressed in vector and matrix form. That is, .

V(t) - V(O) [P(t)]

where V(t) -[P01tlPlltlP21t), '"1,

and V(O) - [Po(O),P(O), 2 (O),'"],

and

P0 0 (t) P01 (t) P0 2(t) P0 41t) *

0......
Pio (t ) P1l ( t ) P12i t )  PJt) "

[P(t)] ' ...

. . . . . (2.43)

Hence given V(O) and [P(t)]. the unconditional probabilities of where 5..

the process is at time t, V(t). can be computed. The only remaining

problem is determining [P(t)]. C,"

In the discrete-time Marko chain Pnij was derived from the
'I-
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Chapmam-Kolmogorov equation,

Pijn+" - Pih n Pkj" (2.6)
kinG

and a similar procedure will be used here. In order for a continuous-

tins Markov process to make a transition from state i to state J in

tine h+t, it must go to some state k in time h and then proceed to

state J in the remaining time t. Therefore,

Pij(h+t) " Pik(h) Pkj(t) (2.44)

k-0

This equation is the continuous-time equivalent of the Chapman-

Kolmosorov equation. By writing out the k-i term, subtracting Pij(t)

from both sides, dividing by h and taking the limit as h approaches

zero, one arrives at
J ,d"

P ht)-P(1 [Pii(h)Pij(t) -P..(t) + PikhP M~)[in~~t -j Lji~h
hh k 1 0 h i

kWi

. (2.45)

The left hand side is the derivative of Pij(t) with respect to time.

With the assumption that the limit and summation can be interchanged

one has,

dij~t 01 [i 1 Pij(t) +Si iPik(h)1 Pkj Ct) . (2.46)N
dt Lh k-O" th

Now let

[2l (2.47)
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and
q~ Fl P1ik(h) 1

- ,i. ! h for k4i. (2.48)

Substituting (2.47) and (2.48) into (2.46) gives

dPij(t) -qij Pij(t) + Sqjk Pkj(t) .(2.49)

dt O
k# i

This equation is known as the Chapman-lolmogorov backwards differential

equat ion.

Equations (2.47) and (2.48) have the following interpretations:

For small values of h the probability that the process makes a

transition out of state i is approximately l+qiih. More precisely,

Pii(h) 1 + qjih + o(h) . (2.50)

The notation o(h) represents any function that goes to zero faster than

h. That is,

J o(h) 0 . (2.51)
h- h 4

It should be obvious that qii must be negative. In fact qii=-Ci. To

show this, recall that the time spent in state i is exponentially

distributed with mean 1I/4. Hence for small values of h

-4.-.

Pii(h) = P[Ti>h] = e
l ~ h 2  ( h 3 " -'

=~ ~ Qh Q ih + "". -
1-21 

3i1h."2-3

I 1 - ih + o(h), (2.52)

and
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(Qih)2  (Qih)3

o(h) - -21 31 - + (2.53)

The interpretation is that when the process is in state i. it departs

at mean rate -qii"

Similarly for small values of h the probability that the process

makes a transition to state k, given that it is currently in state i,

can be approximated by qik h. More precisely,

Pik(h) qik h + o(h) . (2.54)

The interpretation is that when the process is in state i, the rate of

flow to state k is qik" For small values of h, Pik(h) is the

probability that there is a transition from state i, and the transition

is to state k. Since these two events are independent

Pik(h) = P[Ti-h] Pik - (1 - e- ih) Pik

." ( th2 ( h)3
=-(1 - (I - {ih +3 + "') )Ch+ 21 31 +Pik

- (ih + o(h)) Pik

h) + o(h) (2.55)

where Pik is the probability the transition is from i to k, and again

o(h) picks up all terms with powers of h. Hence,

qik 0 Ci Pik " (2.56)

Since 4i is the conditional rate of flow from state i, then 4i Pik must

be the conditional rate of flow from i to J. It follows that
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qjj'qik , and qi-0 (2.57)
k-0 k-0
k~i

As in the discrete case, there is also a forward Chapman-

Kolmogorov equation. The forward differential equation is derived by

interchanging t and h in Equation (2.44), writing out the k-J term and

following the procedure for backwards differential equation. The I
results is

dPij(t) = Pjj(t) qjj + Pik(t) qkj (2.58)

dt %-Ok#J 4.
'

where -.

kj -~ (k~) for j~k, and qj j -~ [

Both the backwards (2.49) and forward (2.58) equations define a

set of differential equations which can be put into vector form by

defining [Q] as

[Q] - L [ [P(t)] [I]]. _,(2.59) 
'

where [I] is the identity matrix. The matrix [Q] is called the rate

matrix. The resulting backward matrix equation is

drP(t)] [Plt)] [Q] , (2.60)
dt

and the resulting forward matrix equation is

d -P(t)] [Q] [P(t)] . (2.61)

dt

Since both equations describe the same process, they both have the same

solutions. The initial conditions for the equations are

30 7
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(0 Ji if i-i
Pij(O) 1~O ~(2.*62)

or in matrix form [P(O)J - [M. The initial conditions simply state

that If the process Is in state i at any given time, it is also in

state i zero time units later.

Hence, a set of differential equations can be written and the

trsnsition probabilities calculated. The solution to the matrix

equation is

[P(t)] 3 Ci

where

[(Qit -[11 + [Qit + (Q~ 2 + (Q~ + *(2.63)
21 31

These equations provide a formal solution. In practice this method is

often so cumbersome that alternate methods must be sought [CLAR7O].

Recall that the primary purpose of finding PijMt was to determine

P j(t). That is,

Pit P Pi(t) Pi(O). (2.64) I

The derivative of this equation is

*v

d~jt) dij~t Pi(O) .(2.65)

dt ioLdt

dP M(t
Substituting Equation (2.58) for yields

dt

31.
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dPj (t) - Pij~t) qjj + Pik(t) qkj 1PiC0) 4

-dt i-O L IVI .

S[Piit) Pi(O)] qjj + 0%[ L P(ik t) Pi(0)I qkj (2.66)

kjJ

From Equation (2.42) the first term in brackets is Pjlt) and the second

term is Pk(t). Therefore,

dP (t) Pj(t) qjj Pk(t) qkJ (2.67)

dt k-i
k#j

or in vector form
drt} WOt [a] .(2.68) .-

dt
..A A

2.5.1 The Poisson Process

Consider the problem of determining the number of arrivals that

occur in an interval of time t, given that the interarrival times (time

between arrivals) are exponentially distributed with a mean of 1/4.

Since only arrivals can occur Pijltl - 0 when JOl (departures are not

allowed). Since the probability of multiple arrivals in an

infinitesimal interval h is o(h), it follows that the rates are

0 when kOJ-,
qkJ - when k-J-1 (2.69)

and
qjj - . (2.70)

The forward differential equations are :
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dPii(t) - Pii(t) J-i (2.71)

-dt

dPUjlt) . Pij(t) + 4 Pi,j-I(t) j2i+l . (2.72)

dt

The solution to the J-i equation is obviously

pii(t) . *-Ct. (2.73)

The results of the J-1 equation can be substituted into the J-i+li

equation to obtain

Pi.i+i(t) - -. Pi,.i+l(t) + Ce- tt  (2.74)

dt

or

Pi,i+i(t) + Pi,i+l(t) - oCe-t . (2.75) .

dt "4-j%

The solution is easily obtained by taking the Laplace transforms of

both sides. More precisely, '

Pii+1(S) - 2  (2.76)(S+V).. .,.

Pii+(t) - cte-t " (2.77)

It follows by induction that

Pij(S) = 1  (2.78)
(S+Clj - l+ l

and

(4t)J
- i e

t

Pij(t) - (J-i) (2.79)

This last equation is the celebrated Poisson process. Thus, the Poisson %J

process is a special case of the Markov process. It is important to
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emPhasize that this &lSO implies that for a Poisson process the time

between arrivals is exponentially distributed. The reverse is also

true, if the tine between arrivals Is exponentially distributed the

process is Poisson.

2.5.2 Continuous Time -Limiting Probabilities

It was shown in the case of the discrete-time Iarkov process that

under certain conditions the limiting probabilities existed, and were

Independent of the initial state, that is,

P ilin Pin .lin pn (2.14)
.1 n- J n- J

Recalling that the difference between P ~n and Pij(t) is that the
ij ij

discrete parameter n is replaced by the continuous parameter t, it

seems plausible that for the continuous-time process

P -lis P(t) -liz ~t. (2.80)

This is indeed the case, and the conditions for the limit to exist are

the same as those for the discrete case.

To derive a set of equations for Pis it is necessary to take the "

limit as t approaches infinity of both the backward and forward

Chapman-Kolmogorov differential equation. The backward equation results

liz dpij(t) -qii lis Pij(t) + 11.. qik Pkj(t) .(2.81)

dt k-0
k~i

If the limit and suation can be interchanged then
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A

HE. dPij(t) -i~ qi +

dt O
KO i

V

-PJ qik

0o (2.82)

By applying the same procedure to the forward equation and using the

results of the backward equation. one obtains "

t)* _ij qjjO a ta !! Pik(t) qkj- 0 (2.83)

k-00
kk#J

Pj qj Q] h - 0 (2.86)

SP kj - 0 (2.85)

The e tecto form ofeatio (2.85)s sl aebe baie rmEuto

V~.* (QI- .(286

Eqaton(284.or(285, r 286 aon wthte oneratono

Of

prbailt eqaIn. _W .rr eI



(2.67) by taking the limit as n approaches infinity and setting

I d i 0. (2.88)t-" e dt

The interpretation of Equation (2.84) is important. Recall that

(-qjj) is the rate of flow from state J when the the process is in

state J. Since P is the proportion of time the process is in state J,

it follows that

P (-qjj) - rate at which the process leaves state J. (2.89)

Similarly, when the process is in state k it goes to state J at rate

qkjo therefore

~~kjD threor - rate the process enters state j *(2.90)

Hence, Equation (2.84) is a statement of the equality of the rates at

which the process enters and leaves state J. Because of this the

limiting or steady-state probabilities are also referred to as the

equilibrium probabilities.

N
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CEAPTER 3

-ELIMTARY QUUEINIG SYSTEMS IN EQUILIBRIUM

3.1 Introduet io

An elementary queueing system is one in which both the

interarrival and service times are exponentially distributed. These

include a number of complex systems involving finite storage, multiple

servers, finite customer populations, and the like. All of these fall

into the category of birth and death processes.

3.2 Birth and Death Processes

A birth and death process is a continuous-time Markov process such

that: (1) the state represents the number of persons in the systemk. .

(2) new arrivals enter at an exponential rate Xk' and (3) people depart

the system at an exponential rate Pk. That is whenever there are k

persons in the system, the time until the next arrival is exponentially

distributed with mean 1/k and is independent of the time until the

next departure which is itself exponentially distributed with mean -"

1 /Pk. Thus, a birth and death process is a continuous-time Markov .. *#

process with states (0,1,2,..) for which transitions from state k may

go only to either state k+l or state k-l.

In terms of the rates in the last chapter

qk,k+l = Xk (3.1)

qkk- =  k" (3.2)

The nearest-neighbor condition requires that qkj=0 for 1k-JI > 1.

37

% % % ,-..



__.f

Moreover, since

qkj - 0, then qkk - -(Lk+Pk). (3.3)

The problem is to determine the limiting or steady-state

probabilities. The equations derived in the last chapter could be used,

however, the derivation is straightforward and follows from first

principles. Therefore, rather than use the results of the last chapter -

which tend to camouflage the basic approach, the equations will be

rederived for this simpler case.

The probability that the system contains k persons at time t+h can

be expressed as

Pk(t+h) = Pi(t) Pik(h) . (3.4)

If it is assumed that the probability of two or more state changes in

infinitesimal time h is negligible compared to single state change,

then Equation(3.4) becomes

Pk(t+h) - Pk(t) Pkk(h) + Pk-1(t) Pk-l,k(h)

+ Pk+l(t) Pk+l,k(h) + o(h) (3.5) 4.

where 
-%J

Pkk(h) - PEzero arrivals and zero departures in hi k in population],

F1Pklk(h) -Pone arrival and zero departures in hi k-1 in population],

Pk+l,k(h) - P[zero arrivals and one departure in hi k+l in population],

o(h) = P(multiple arrivals and/or multiple departures in h].

In order to justify the o(h) assumption and to calculate these

probabilities, it is first necessary to find the individual arrival and
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i.

departure probabilities. The following assumes that the process is in

state k. The birth probabilities are:

P[zero births in h] - P[Tb)h] - 1 - P[Tbih]
-(1- - k h

-e-kh

(Ukh)2  (Xkh)3  
%

-1- X h + - -__

= k h  
21 31

1-Xkh+o (h ). (3.6) .1

P [ o n e b i r t h i n h ] - P [ T b i h ] . .

-X•k h
( kh)2  (kh) 3  

- l
'k 2! 31 3!

X kh+o(h). (3.7)

P(two or more births in h]

- 1 - P(zero arrivals in h] - P[one arrival in h] -;
N. ...

= 1 - [1-Xkh+o(h)] - [)kh+o(h)i ]

= o(h). (3.8)

The death calculations are the same as births except the parameter I

)k is replaced by pk* More precisely,

P[zero deaths in h] - l-Pkh+o(h) (3.9)

P~one death in h] Pkh+O(h) (3.10) ,

P[two or more deaths in h] = o(h) (3.11)
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The desired joint probabilities can now be calculated:

P[zero births and zero deaths in hi - [1-Xkh+o(h)] [1-Akh+o(h)]

- 1-Xkh-Pkh+O(h). (3.12)

P~one birth and zero deaths in h] [Xkh+o(h)] [l-pkh+o(h)]

W Xkh+o(h). (3.13) %

P[zero births and one death in h] - [1-Xkh+o(h)] [Pkh+o(h)]

- ikh+O(h). (3.14)

P(tvo or more arrivals and/or two or more departures] - o(h). (3.15)

Substituting these results into Equatio (3.5) and adjusting the

subscripts to account for states k+1 and k-1 result in: ,...

Pk(t + h) - (l-Akh-Pkh+o(h)] Pk(t) + [Lk-lh+o(h)] Pk-l(t)

+ [pk+jlh+o(h)] Pk+l(t) + o(h) . (3.16)

Following the usual procedure of subtracting Pk(t) from both sides,

dividing by h, and taking the limit as h approaches zero, one obtains

dPk(t)

dt -(Xk+Pk)Pk(t) + Xk-lPk-l(t) + Pk+lPk+l(t) (3.17)

Although Equation (3.17) is valid for all values of k, it is sometimes

more convenient to separate it into two equations, one for k-0 and one

for k2l. This is because some of the terms are zero when k-0. That is,

it is impossible to have a negative number of customers, and when the

number of customers is zero the death rate is zero. More precisely,

40
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00 (t) Jb

- -.0Po(t) + PlP(t) for k=0 (3.18a)

dPk(t)
dt = -( k+Pk)Pk(t) + ).k-lPk-l(t) + Pk+lPk+l(t) for k21 (3.18b)

Equations (3.18a) and (3.18b) are identical to the equations that would

have been obtained by substituting the proper values of qkj into

Equation (2.67).

The solution to this set of differential equations depends on the

rates )k and pk. Unfortunately, no matter how simple Xk and pk are, it

is nearly impossible to obtain the transient solution. Fortunately, -,

one is usually only interested in the steady-state solution, and it is

easy to obtain. The limits as t approaches infinity of Equations

(3.18a) and (3.18b) are

o Po + P1P1 for k-O (3.19a)

0 -().k+Pk)Pk + "_k-lPk- 1 + Pk+lPk+l for k.l, (3.19b)

or N

P = P1 for k=0 (3.20a)

(-k+Pklpk - 'k-lPk-1 + Pk+lPK+l for k2, . (3.20b)

The left hand sides of equations (3.20a) and (3.20b) are simply the

rate of flow out of state k, while the right hand sides are the rate of

flow into state k. In problems of this sort it is often helpful to

sketch a diagram showing the average rate of flow from one state to -_

another. Such a state-transition-rate diagram is shown in Figure 3.1.
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X'0 X1 X2 k-1 Xk I ;.Or

'1  P 2  113 Pk Ak+1

Figure 3.1 State-Transition-Rate Diagram of the Birth and Death Process.
VA

By equating the flow rate out of a state to the flow rate into the

same state, the following equations arise:

state rate out - rate in

0 ).oPo = u P  °""-"

1 (-)l+PlP = XOPO+1 2P2

2 (k 2+P2 )P2 
=  llP3p3

3 (X,+ 3 P

k,k 1 ( ) =  k-lk_1+k+1~k+1 • (3.21) ,

Solving these equations in terms of P0 yields:

Pi 0 'V1 - P0

2 P O 0-PP0-

3 0 12 P

~0 ~0

k P0. (3.22)
P0293  ... Pk-l k 

.-
0'
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Po can be determined from the conservation of probabilities equation.

That is

.0-

k-0

P0 + P0  X0112" ..-- k2 1 r-

). . ..I~. )k-2)k- - (3.23)+c [ " +
k lllP2P3 • Pk-l~kJ

, % ,

Clearly for the limiting probabilities to exist it is necessary %

that ((

k l 1P2P$o "*k-lPk "

This condition also may be shown to be sufficient KLEI75.

3.3 Birth and Death Processes and Elementary Quousina Systems

By properly selecting the birth and death rates, a number of

rather complex queueing systems can be modeled. The birth process ,

corresponds to the arrival process and death process to the service

process. If the system is in state k, the arrival rate is X and the

service rate Pk. The birth and death model does not explicitly allow

for specifying a rule for deciding which among several customers is to

be served next, nor is one required. This is because the state of the

process is invariant to the order in which customers are served. The

reason for this is that all customers are assumed to be statistically

identical and the service process has the memoryless property. Perhaps

the most commonly used rule and the one whose operation is most easily
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visualized, is the first-come-first-serve rule. However the service

discipline can be last-come-first-serve, or service in random order. An

arriving customer can even preempt the service of a customer without

changing the dynamics. The key in all these oases is that a server is

never idle when customers are waiting in the queue, and that the

probability of a customer departing the service center in the next

incremental interval is Pkh independent of the amount of service

previously received. Of course, it is necessary that the service

discipline be work conservative. However, this does not imply that if a

customer is interrupted the amount of service he received must be

remembered. The PDF of the service time is memoryless -

3.4 /M/I

The simplest and one of the most celebrated queueing systems is

one in which the birth and death rates are constant regardless of the

state of the system. More precisely,

)k - X for k - 0,1,2,... (3.25) ..
n%

Pk - p for k - 1,2,3,... . (3.26)

Recall that when the arrival rate is constant (that is it does not ..

depend upon the state of the process) the arrival process is Poisson.

The state-transition-rate diagram of this system is depicted in

Figure 3.2.

% %
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Figure 3.2 State-Transition-Rate Diagram for MIM/i System.

By equating the flow rate out of a state to the flow rate into the

same state, the following equations arise

state rate out - vato in

1 (.+P)Pl - o+L2

2 0-.+P)P 2 = )P+PP3

3 (x'+P) P3 = 2+ILP4-""

k,kjl (J.+P)Pk = k-+PPk+I " (3.27)

Solving these equations in terms of Po yields

P1 
= ( .IP) P0

2 (./p) 2 P0

P3  (X/9) 3 PO

Pk (X/p)k pO" (3.28)

Again, PO can be found from the conservation of probabilities equation.

more precisely, a %

k 0

and

', . .3..45"., .p-J.
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-4

h (/)k P0
PO +  O /lk O = It

k-1 

NM

kin

PO kL= 0( IL)k

PO L -1

PO= 1-(../p). (3.29)

The utilization of the service center is

p - 1-Po - /p. (3.30)

The quantity X/p appears frequently in the performance parameters, and

therefore it is customary to give then in terms of the utilization, p.

The steady-state probability that the system contains k customers

isk
Pk Pkl(-p). (3.31)

The mean number of customers in the system and its variance can be

calculated by the probability generating function (which is very

similar to the z-transform) [KLEI75] [KOBA81]. By definition the

probability generating function is,

- P k (3.32)=O Pk, z'•

kin0

The mean or first moment is is equal to derivative of P(z) evaluated at

z equal to one. More precisely,

kiz. _knd -p k P [] L (333

dzk-0 k z- Z-
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The second derivative of Pz) evaluated at z equal to one is

k (k-l)Pk - E[N2 1 - ZEN] (3.34)
k=O

Hence the second moment and variance are respectfully:

d2P)
E[N 2] = - + EN] D (3.35)dz 2  Izml i

Var[NI - E[N 2J-([NJ) 2 . (3.36)

Returning to the problem at hand and substituting Pkmpk(1p)P~~~~z)~~~ =ko(l-1Zk  1PP)(~l !

results in

.. -.NO: p (1-P z -lp) (pz)-

1-P 9 (3.37)

l-pz

and

L - (3.38) .1-p"

and . -

Var[N]I - (3.39)

(1-p) 2

The average response tine can be calculated by Little's law. More *

precisely,

L m L m p 1 340

- T X ).(1-p) p(1-p)

47



Little's law can also be used to calculate the mean number of

customers in the queue. Lq. However, it is first necessary to calculate

the mean waiting time, Vq* Since the mean of a sun is equal to the sun

of the moans (irrespective of dependencies involved), it follows that

and W + q (3.41)

1 1 p (3.42)q= i ES] &(1-p) ii &(1-p)

Little's law can now be applied to determine Lq

2
L -P " (3.43)
q q (1-0 1-P

Another interesting quantity to calculate is the probability of

finding at least i customers in the system:

Pjkl Pk (3.44)A

k-i k-i k-O k-O JJ
".,. ..#

where the last expression follows upon application of the algebraic

identity

i pk =1- (ll)(lp). (3.45)

k-O

Figure 3.3 compares the normalized mean response time (1/wl') of

the M/M/1 system to that of the D/D/1 system. For both systems the end-

point values are the same. lore precisely, when p-O. the normalized

mean response time is one, and when p-1. the response time is infinite.

However, for values of p near one there is an extreme difference. For
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Figure 3.3 Normalized Mean Response Time Versus Utilization
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RM

example, when p-0.9 the mean response time of the K/I/1 system is ten

times that of the D/D/1 system. Clearly, the DID/1 curve is the optimal

one, and a large penalty is paid for operating the K/N/i system near

its maximum capacity. The reason for this is that there are no

statistical fluctuations in the D/D/1 system, whereas both the

interarrival and service times are random variables in the M/N/1

system. Any reduction in the variation of either of these reduces the

response tine, while any increase results in an increased response

time. In fact it will be shown later that the mean waiting time (a

quantity closely related to the response time) of the N/D/1 system is A

exactly one-half of that for the K/M/ system.

Figure 3.4 compares the mean number of customers in the N/N/1

system to that of the D/D/1 system. Note that curve for the D/D/1 is a

straight line over the region p(1 (L-p), and when p-i the number of

customers is infinite. Again the differences in the curves are due to

the statistical fluctuations in K/N/1 system.

3.5 N/M/A - Finite Number of Servers

Now consider the case when the number of servers is more than one

and finite. Assume there are m servers. The birth and deaths rates are:

k M. k a 0,I,2,... (3.46)

Pk - miu(ksmpj . (3.47)

The state-transition-rate diagram is depicted in Figure 3.5.
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)2M 311 (m-2)uA (m- 1)11M / mI mu mu

A.

Figure 3.5. State-Transition-Rate Diagram for M/M/m System.

The steady-state equations are

state rate out - rate in

0 UO 0 - pP1

2 (X+2p')P 2 = LP1 + 3P)P3

3 (.+3pIP 3  P2 + 4pP4

rn-i [ '+(.-')JP..- 1 = n--2 + miLP
a () 'Up)P 3 - UU-1 + Epps+,

m+1 (X+RPnaPl - XPm + pm2I

m+2 ( +mp)Pn+ 2 = )JPn.l + ngP 3  (3.48) N'a-NI

Solving the first m equations in terms of P0 yields: A

P1 - (WO/l) PO

P2 - (1/2) (./p) 2 pO

P3 - (1/61 ()./ji3 P0

and3
Pk (1k) (X/P)k P0  for kjn (3.49)

Similarly, solving the equations for states m,m+l, and m+2 yields
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P+ (l /i.) ( /)U+i P , "

P+2 - (1/1m.2) (X/p)l+2 p0

and pa+3 _ (l/aim3) (X/P)m+3 PO

Pk _ (1/mink-m) (X/A)k PO for k~z . (3.50)

Collecting the results together

( kk) (,/P)k PO for km-

P {(1/kI) (O/)k PO for kja , (3.51)

or equivalently kI 0
Pk

10 pk 
"

. " P for k2a (3.52).'...

where p , -

all

Solving for P0 in the usual way results in:

k -k
PO, + +; "I at

k-I k-a

k -1
PO (aP)k +(mP' pk] '"

___l _=O ' "",

k-1 k-0

(m)r(ap m  -

P 0 kI + (-P) (3.3)

k-i

.4-:.. :
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Similarly the mean number of customers in the system is:

1. k aPk  P n

k-1

L-o. ' k,,k(k

PP

= a 0 + 0
k-1 k-a

l (up)

- ~ 1(k-1)! 0  (m+k) ~ml
k-i k-0

m-2
0 (U uP)k +P(up)* + p

k-0 k1 0alUP -P)2

NO+p (up),2P (3.54)

Figure 3.6 is a plot of the mean number of customers versus the

arrival rate for a-i, a-2, and m-3 (1lp=). Observe that the shape of

all three curves are similar.

Again Little's Law can be used to determine the mean response

time:

L L + [ p (p)"- o 1 (3.55)

T I. p Lin! (i-p) 2  0

Figure 3.7 is a plot of the normalized mean response time verse

the arrival rate for a-1, m-2, and m-3. Again observe that the shape of

the curves are very similar.
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3.6 M/K/I - Infinite Number of Servers

Now consider the case when the number of servers is infinite. That

is, whenever a customer enters the queue, he immediately starts to

receive service. This system is equivalent to one in which the number

of servers always equals the number of customers in the system. In

terms of the birth and death model the rates are

- k = 0,1o2.... (3.56)

p- kp k - ,,.. (3.57)

The state-transition-rate diagram is depicted in Figure 3.8.

/ 2P 3 P k (k+l) A

Figure 3.8 State-Transition-Rate Diagram for M/M/ System.

The resulting equilibrium equations are:

rate out - rate in

0 P = P1 -).'

(X+10+P Ul )O + 2 PP2,':-i..-

2 ~()+2 10)P 2  M X.P +31P3

S(X+31)P 3 - .P2+4PP4

k,kjl (X+kp)Pk  XP+lk+l)p P . (3.58) ",,k k-1 k-]

57p
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Solving these equation in terns of PO yields:

P1 - 0./) PO

P2 - (1/2) ()/p)2 PO

P3 - (1/6) IX/p)3 PO

Pk 1/k) (X/P)k P (3.9)

Solving for PO yields

P0 [I (1/k!) (,/P)k] -1

PO (4)(/~ ] I.k-i

PO 11k1 X/,) 1P0

.'.

Hence, Pk" (1/kl) /)k 0- (3.61)

The mean number of customers in the service center is: '.

L k Pk
k-O

k-

k-k

. -.#(X./P) (l/k,)()/~ WO

'(3.62)
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The throughput of the system is obviously X. The mean response

time can easily be determined by Littles law:

L - - - (3.63)

This is obviously correct since each arriving customer is immediately

granted a server and the average service time is 1/p.

3.7 N/l/K - Finite Storaca

Now consider the problem in which the arrival rate and departure

rates are constant, but there is a maximum number of customers that the

system can contain. Assume that at most the system can hold I customers -

and that any further arriving customers will refuse to enter the queue

and will depart immediately without receiving service. This system is

equivalent to a birth and death process with the following rates:

0 kZK (3.64)

k p k - 1.2 ...K. (3.65)

Thus, as soon as the system fills up, the input is effectively turned

off. The state-transition-rate diagram is depicted in Figure 3.9.

Figure 3.9 State-Transition-Rate Diagram for I/l/K system.

N I .... % %
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Obviously the equations are the same as for the M/Ill case exceptU

that Pk-0 whbn k>L Hence,

P0k ~

0> M (3.66)

Solving for P0 is somewhat more difficult, but again the conservation

of probabilities equation is used.

P0 +~ 0-/F) k P0 -1
k-I

P0  --L~ 1

K+1

- -Pli (3.67)
0 1-Oga 11

Hence,

Since there is only a single server the utilization is

p- 1 -P 0  (3.69)

and mean throughput is

Tm p p' (3.70)

Another quantity of Interest in this system is the probability

that an arriving customer finds the system full, and therefore leaves
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without receiving service. This probability is

[1-1[/401./01 (3.71)
PK 04 K _ /)+1 "

KA

3.8 MIM/l)1M - Finite Customer Polwlation - Sinale Server

This model is often referred to as the machine repair model.

Consider a job shop which consists of N machines and one serviceman.

Assume that the amount of time each machine runs before breaking down

is exponentially distributed with mean 1/k, and assume that the amount A-

of time for the serviceman to repair a machine is exponentially

distributed with mean 1/p. The birth and death rates for such a system

are:

WKk)). k. .
0 k). (3.72)

Pk p k = 1,2,3, .... (3.73)

Since there is only one serviceman the service rate is p,

regardless of the number of machines down. On the other hand, if k

machines are not in use, then since the I-k machines in use each fail

at a rate X,. it follows that )k=(M-k)k. In the sense that a failing

machine is regarded as an arrival and a repaired machine as a

departure, the system represents a queueing system with a finite

population. The state-transition-rate diagram is depicted in Figure

3.10. <
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MX (M-1) x (M-2)X 3), 2N

As JA IsI IA

Figure 3.10 State-Transition-late Diagram for K/Ill//I System. 5

The resulting steady-state equations are:

state rate out - rate ia

1 [(N-1).+g~P1 M W~O+IdP2

2 [(N-2)1.+jtP 2 - (*-l) Xpl+aLP3

3 [(-3)X+1 a]P3 - (N-2)).P2 +pP4

k~k 1 [(N-k)X~pJPk - (I+1-k).Pk... 14Pk+l (374

Solving these equation in terms of P0 yields

P1 - I (.l/A) P0O

P2 - 1(1*-1) 0/) 2 PO

P3 - N(I-l)(M-2) (.%/P

Pk fcMl/(*-k1]l (X/11)k P 0  kjI

0 k)01k . (3.75)

Solving for P0 is the usual way results in:

PO- E It/(N-k)tJ (XlP)k] . (3.76)

k-O
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Sinoe there is only a single server the utilization is

-1 E MI/CM-k)!]O/pk-

-0

kIO

[Ni(-k) !] (/p)k ;

[1/Il-k)I] 1),/1k,
- _____________1 3.77) .[

Finally letting i-r-k and changing variables results in:

pi (3.78)

'r e Ir P,.r

Cl/i!) (l./,1)i 2-

I=1'- '

Siamilarly, the mean number of customers in the system is: -.

. a,-'
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k-1

k-O

The &mea throughput is

TP - * (3.80)

Again using Little's Law to find the response time yields:

L M-G4./ia)p 1 (.1
R - - - M - - - 0(.1

T PI P P

3.9 Other Elementarv ftuoina Systen

Several other queueing systems can be modeled by judicious

assignments of the rates Xand pk. For example. the following systems

are solved in Kleinrock : K/Kim/u - K server loss system. K/Mm//N -

finite customer population - infinite number of servers, K/K/u/K/M -

finite population - m servers - finite storage, and other cases

including discouraged arrivals [1L2I751.

16
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CHAPTER 4

QUKUEING MODELS WITH GENERAL SERVICE OR ARRIVAL PATTERNS

4.1 The M/G/1 Queueina System

The M/G/1 model represents the contention for a single server

under the assumption that the arrival process is Poisson. Thus, this

model is more general than the M/X/1 in that there are no restrictions

on the distribution of the service times. The difficulty in analyzing

this model stems from the fact that the distribution of the service

times is not memoryless. Information about when the service started

assists in predicting when the service will be completed. Hence, the

number of customers presently in the system is not enough information ". .,*

to predict the number of customers in the future. Therefore, the

process can no longer be represented as a continuous-time Markov chain

with the number of customers in the system serving as the state space.

However, if the system is observed only at departure instants the

past history plays no roll in predicting the future. This is because

service is Just starting, and prior information cannot aid in

predicting when it will be completed. The past history also cannot help

with arrivals since the interarrival times have a negative exponential

distribution and are therefore memoryless. Hence, if the system is

observed only at departure instants (immediately after a departure) the

system appears to be a Markov chain. Such a process is referred to as

semi-Markov process with an embedded discrete-time Markov chain. That -%
,%

is, the behavior of the system at the departure instants can be
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described by a Markov chain. Fortunately, the solution at these

embedded points happens also to provide the solution for all points in

time [CO0S691 [CIIL7$].

Recall from Chapter 3 that the limiting probabilities of a

discrete-time Marko chain can be found from

V - V[P] (4.1) VN

where V - [P0oP11 P2 ,...] and [P] is the one-step transition matrix. The

elements of [P] are the one-step transition probabilities:

P -J - P[X+i=JI~n'i" (4.2) A
That is, PiJ is the conditional probability that the next state is J,

given that the current state is i. Since the embedded process is

obtained from the continuous process by observing the system

immediately after a departure, It follows that

xn -I + A for
Xn+1

A for In=0, (4.3)

where Xn is the number of customers in the system at the nth departure

point and An+, is the number of customers who arrive during the service

time of the (n+l)st customer. Thus, J(i-l is an impossible situation

'N.N
whereas J~i-1 is possible for all values since any number of arrivals

can occur during one service time. It follows that the form of the one-

stop transition matrix is: -.'
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&0  al a2  £3 * . .

&0  al a2 a3 .. . -l

0 a0  a1 a2 . . .

[PI- 0 0 £0 a1 .

0 0 0 £0 . . .

(4.4)

where ak P[k arrivals during one service tine]. For example Pi'i-1 is -sw.

the probability that zero arrivals occur during one service period, and -1

Pi'i is the probability that one arrival occurs during the service

period (the one arrival offsets the one departure). Also, note that the N

first two rows of this matrix are identical. This is because if a

departing customer leaves an empty system, the state remains zero until

an arrival occurs. The graphical form of the process is depicted in

Figure 4.1. The labels on the arcs are probabilities.

,4

aai- 

'" ."".

* 

%.
.... :

ao  

, -,

Figure 4.1 State-Transition-Probability Diagram for the I/G/i System. %A
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Now, since the arrival process is Poisson with rate X, the

conditional probability of k arrivals, given that the service time is

P(k arrivals I the service time - v] e ( I • (4.5)

Thus, the unconditional probability of k arrivals is,

- ki. - dB(, (4.6a)

or

ok e ' k ' I - b(v) dv , (4.6b)

where B() is the probability distribution function (PDF) of the

service times, and b(v) the probability density (pdf) of the service

-1% %-
times. .-

Returning to the problem of finding the limiting probabilities, it

follows that the component form of Equation (4.1) for the M/G/1 case is

k+l1."

P- P0 a + P i akl-i - (4.7)

This equation can be solved by the method of probability

generating functions. By definition the probability generating function

is

F(z) -fk k (4.8) 2
The procedure is to use the probability generating function to

transform Equation (4.02) into a function of z, and to then solve for
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P(z). Once NOz has been determined, the limiting probabilities can be

found from the series expansion of P(z). More precisely, the

coefficient of the z - term is Pi. Multiplying both sides of Equation
k'ut

(4.7) by zand summing from k-O to k--n, results in

k ~~ k~ + j +

~Pk z P & i k+-l 49
k-O kin 0' i1l

Interchanging the order of the double summation and simplifying iesults

in % - J

-C0
kP(z) -P 0 a(z) +j ~ ak+l..i z

I k-i

PO a~ i-i+j-o

'!P'' a,

PO a(z) + Z-1 iPi z 00ai 1'

- P0 A(Z) + z-1 [P(z)-P01 a(z) .(4.10) .

Solving this last equation for P(z), results in a,

P0 a(z) [z-lJ(.1).5.

Z-a(z)

From the definition of the probability generating function. a(z) is

a(z) k1 b(v) .vI (4.12)

k0 0
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Interchanging the order of the summation and the integration, results

in:%

a(z) -f b(-0 d(?)
0 1

S *0-l.-Xz)v b(v) d(v) . (4.13)

The last equation is the same as the Laplace transform of b(z) except

that the parameter s has been replaced by X-Xz. Let b (a) denote the

Laplace transform of b(c), then a(z) - b O-).z). Substituting the

result into Equation (4.11) results i-

PO bel'-X'zl [z-I] 1

P(z) = -(4.14)

z -b .-;Xz)
5.

Po can be determine from this last equation by taking the limit of both

sides as z approaches one. The limit of P(z) as z approaches one is

i. o •h •""}iPk-

T=k zk li Pk zk Pk 1 (4.15)

k.0 o -D k-o:

In addition the limit of b (X-Xz) as z approaches one is b(O) = 1. .f;-,

That is, b(v) is a density function, and

b( ) dv - 1 . (4.16)

It follows that the limit as z approaches one of Equation (4.14) is -

indeterminate and l'Sopital's rule must be used. The derivative of

b oO- ) evaluated at s-1 is

70
. %

V ' ,0.%.".-.* - ... --'

00 Vf
o go •



db (h-).z)d

- 1 A.{-0.-)z)] b(:) dv~v

o- b~v bd d

Jo

where E[S] is the average or expected value of the service time. Using

this and applying l'Hopital's rule results in

P0 - 1 - XEE(SI (4.18)

The utilization is therefore

P - i-P 0 - .1(8]. (4.19)

Substituting this into Equation (4.11) yields the Pollaczek-Khinchin

(P-K) transform equation

PNO- 1 ..)z (4.20a)

or equivalently

(1-p) b*(1.-Xz) Uz-1)
PNO- 1- .)z (4.20b)

As derived in Chapter 3 the mean value of Pk equals the derivative -~

of PNO evaluated at z-1. After using Meopitalua rule twice the result

IsN
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L 2E[S2] + )EI[S] . (4.21)
L=2(1-XE[S])

The appearance of the second moment in this equation comes from the

fact that:
X-( RS 1 (4.22)

dz2  IZ-i

The mean response time can be calculated from Little's law. More [U
precisely, .' .

L _L XRE[S1[ - + E[S] . (4.23)
T -- - 2(1-XE[S])

The mean waiting time is obviously Wq = K - E[S]. Hence,

[ ] "(4.24)Wq =2(1-)E[S])

The mean number of customers in the queue can be determined from Wq.

That is
Lq = Tlq = Xlq

X2E[S2] .''-- •2E~s2] (4.25)

2(l-XE(S])

As an example consider the M/M/1 system. The density function of .

for the service times is

b( o , (4.26)

and .".

b (s) - (4.27)
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be (X-Xz) - (4.28)).-).z+p

Substituting into Equation (4.20b) results in

PC:) a - (4.29)
l-pz1-

P(z) can be ezpanded into positive powers of z by simply dividing 1-p

by 1-pz. The result Is

1-p (1-p) [ 1 + pz + p2 z2 + p303 + ] (4.30)1-pa ,

Thus,

k (1-p) (4.31)

which is the same as before.

4.1.1 Comments on the Steady-State Solution and that of the Embedded

Markov Chain , .a

Early in this chapter it was stated that the steady-state solution

for all time and that of the embedded Marko chain at the departure

instants were the same. Unfortunately, there is no simply way to prove

this statement. It was, however, shown that PO of the embedded process

was l-)E[S, which agrees with the result in Chapter 1, which is valid

for all work conservative single queueing systems. Hence, P0 is the

same for both processes. Also, since PO is the long-run proportion of

the time that the system is idle, the ezpeocted values of the normalized

idle and busy periods are the same.

731
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The approach taken here of simply stating that the solution of

both processes is the same, is that taken by most texts on queueing

theory [XLEI75] [ALLE78 [ROSSSO] [KOBA81] [HAYES4]. The reader is

advised to beware of short simple proofs claiming to prove that both

processes have the same solution. In particular the proofs in Gross and

Cooper are incomplete 0GROS741 (COOP84]. Both prove simply the

probability that an arriving customer finds k customers in the system

is equal to the probability that a departing customers leave k in the

system. As pointed out in Ross and Kleinrock this is true, not only for

the M/G/1 system, but also for the K/K/i, G/M/1 and GIG/1 systems

[ROSS80] [KLE175]. Furthermore, it is proven by a counter example in

Ross that an arriving or departing customer does not necessarily see
,.-.~

time averages. That is, the probability that an arriving customer finds ..'

k in the system is not necessarily the same as Pk# However, both Ross

and Kleinrock state, without proof or references, that if the arrival i

process is Poisson then an arriving customer sees time averages.

Additional comments on this subject are contained in another

section in this chapter. ,:e

4.1.2 M/D/1 - Posson Inputs - Constant Service t ze .

As a second example of a K/G/1 system, consider the case in which

the arrival process is Poisson with mean rate X and the service time

constant with rate p. Since the service time is constant

E[SI - i/P , (4.32)

and *.

E[S2 ] = (E[Sl) 2 - i 2 . (4.33) .'I
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Substituting these results into equations (4.21), (4.23), (4.24) and

(4.25) yields:

L =21/I) + -

-
2

2(1-p) +

2
( p -p1 (4.34)
(1-p) 2(1-p)

4.-.,...

p22

R 2(1-p) + pL

1 p (4.35)

L - /) 2(4.36)q 2(1-)./It) 2(1-p)

I.

The mean performance equations for the MID/1 system are compared

to those for the M/I/i system in Table 4.1. They are also compared

graphically in Figures 4.2, 4.3, 4.4, and 4.5. Observe that L, Lq, R,

and Wq are all less for the M/D/1 system. This is because equations

(4.21) and (4.23)-(4.25) are directly prl-portional to the second moment
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Parameter M/D/i I/Kll

L 7- -1(,-)

Kp(l-p) 2ji(l-p) P(1-p) 4

Lq 2(1-p) ip

I. P

Vq 2ji(l-p) i(1p

Table 4.1 Comparison of MID/i and X/I/i Equations.

1%%a
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of the service tins. That is, for a fixed mean value, as the second

moment or variance increases so does L, Lq, R, and Vq. Also note that ,

Lq and Vq are exactly one-half of that for the KM/il system. This

results from the fact that the second moment of service time for the

M/Nl1 is 2/p 2 , which is exactly twice that of the M/D/1 system.

Although they will not be derived here, the probability generating

function, customer distribution and variance for the M/D/i system are

ELAVESS]1:

Pz) (4.38) ei -

1- z p l I - )  14381 2 .: 2,. .-

SJp)k-jl(jp+k_j)oJP
Pk (I-p) 1-1) k - j  (4.39) '. .

j0 (k-j~t

Var[N]J=p. + __ (4.40)
6(1-p) 4 (1-p)

Notice that these equations (and their derivations) are much more

complicated than the corresponding expressions for the M/M/1 system.

That is, the fact that service time is constant drastically complicates "

the analysis rather than simplifying itt ,

,U •.'..

4.1.3 MiG/1 Nonureemtive Priority

While this might not seem to be the appropriate place to discuss

the priority service discipline, all the results here apply also to the

K/K/1 nonpreemptive priority queue, and furthermore these are the only
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known results. A priority queueing system is one in which customers are

grouped into classes and then given priority according to their class.

Although there are several service disciplines based on priority, only

the nonpreemptivo discipline will be discussed here. While it would be

nice to have an explicit expression for the probability distribution of

customers or a transform expression, no one has derived such an

expression. Thus, the following analysis is concerned with determining

the mean values of the performance parameters.

It is assumed that the customers are divided into a classes ".Z'

numbered 1 to n, and that the lower the priority number the higher the

priority. That is, customers in priority class i are given preference

over customers in class J, if i<j. Customers within a priority class

are served with respect to that class by the FCFS rule.

It is also assumed that the arrival process is Poisson. More

precisely, class i customers arrive from a Poisson source at an average

rate of ).I. Hence the combined arrival process is Poisson with rate X,

where X - X1 + X2 + "'" + )n- Each class of customers may have its own

general service time distribution. Hence, the combined PDF of the

service time is given by

6

B(?) - - B(T) + - B(T2 ) + " + - (4.41)
I 1 X 2X (

where

B(-id PDF of the service time for class i customers, "

- Probability the customer receiving service

belongs to class i.

82

Na ~ r% %E'~~~IV .'.• %.< ~



It follows that the expected value and second moment of the service

time are respectively:

).1 )-2

E[S] '- E[S1]+ + S+ - E[ ] 1 (4.42)

E[S 2 ] 
- -- E[S 1

2 ] + 2S + ' . (4.43)

'.9Since on the average X9i customers arrive per second and these

customers require an average of E[Si] seconds of service, then XiE[Si ]

is the percentage of tine the server is serving class i customers.

Therefore,

P Pl + P2 + + Pn "
where

Pi = L Xi [Si] "(4.44)

Now suppose that a customer of priority i arrives at the system at A*

time t o and starts to receive service a time t 1 . His waiting time is

thus Vq= ti-to. At t o lot there be kj (J-1.2,...,i) customers of class0d

j ahead of the arriving customers, and lot there be either one or no

customers in service at t o . Also lot ki (j=1,2,...,i-1) represent the

number of class J customers that arrive during vq, and hence receive ,

service before the customer wao arrived at t o . Nov let

Vj - total time required to service the ki customers,

V' - total time required to service the kj' customers, ., o6

and

0 the time required to finish serving the customer
in service at to. .Iu
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It follows that
i-1

-': + Tj + TO (4.45)

J1-1 J-1

sad

Vqi = E[q] - I + H[ -j] + E[TO] (4.46)
j- J-1

whore T is the sas waiting time of a class i customer.

Since k and Sj are independent random variable it is easily seen .

that
-[j] =[kj] E(Sj]. (4.47)

Utilizing Little's law yields

E- x ECS I V
i i qj

- j qj. (4.48)

Similarly,

Elvj'] j'i (4.50)

=pj W qj . 14 48 ",."-"

.. '%

i

1qi _____=_lpj +j lp j  q +'v O  (4.52)

1-
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where

J-1

By induction on i one obtains

ZITO]
Uqi M - (4.53)

V 1

Is order to determine ZITO] assume that nl, and that the arrival

and service processes are the same as the earlier combined processes. 40

Bence, there is only one olass of customers and they are served in FCFS

order. Therefore, T q1 equals Vq for a I/Gil system, and

IC:0] RV ) B[8 1  (4.54)
411 I-P 2(l-p)

Solving for E[vo] yields

ZITO] = ES2] (4.55)

Finally, substituting this equation into the last expression for Wqt

results in

qi 2(1.q1)(.. (4.56)

The mean values of the other parameters follow directly from the last

expression. More precisely,

*% p... 35

r. e. 4r C 0 r , ,. 4
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Ri - E[S i] + Vqi (4.57)

Lqi M )t Wqi' (4.58)

Li M X i Rio (4.59)

The only other equation that has been derived for the

nonproemptive queueing discipline is the variance of the response time.

The equation is given without proof :

Var(T[ = var[Sil + 3[lR [S$]

2

+ (4.60)

[LAVE83]. Unfortunately, those are all the equations that have been

derived for the nonpreemptive priority queueing discipline. They are

far short of what one would need in order to determine the queue size

or buffer size so that overflow does not occur.

The behavior of priority queues is illustrated graphically in

Figures 4.6, and 4.7. Figure 4.6 is plot of LI. L2 1 L3 , and LT (total)

for the K/i/ priority system. It is assumed that all arrival rates and

service time distributions are the same for all three classes. It
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should not be surprising that LT is the same as the /i/1 system with

one class sad an arrival rate of ).I 062 +X3. Figure 4.7 is a plot of the

normalized meas response time (E[S]Im) for the same system. Note that

in both figures the service discipline has the most effeet on the class

with the lowest priority (i-3). Figures 4.8 and 4.9 are similar to

Figures 4.6 and 4.7 except that the service time is deterniaistic. . If

4.1.4 Comments on the N/6/1 esonsai Model

The /O/a model represents the contention for a identical servers

that operate independently in parallel under the assumption that the

arrival process is Poisson. Thus, this model is a generalization of the

K// model. Although this model is often encountered in practice,

analytical results have not been obtained for it. The primary reason

for this is that it is not a semi-larkov process. More precisely the

number of customers in the system at the departure instants is not

enough information to predict future behavior. 1iformation concerning

the amount of service received by customers at the other servers is

relevant. Nonce, _j ssm AM0 "o posss oo a embedded Markov chain

at l degart in .a.t$

4.2 The GIN/i QuseeinA System

The G/i quesuing model represents the contention for a single

server under the assumption that the interarrival times have a general

distribution and that the service times have an exponential -

distribution. Compared to the /G/1 model few analytical results are .

available.
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Sinee the arrival process is sot memoryless, the process is not

larkoviaa. However, if the system is observed only Just before an

arrival, it appears to be a discrete-time Markov chain. Honce, the

proesss Is a semi-Markov process with am embedded chain. Unfortunately,

the solution at those embedded points is not the solution for all

points in time [CO1691 G10574] [CXNL7$]. However, it is possible to

determine the mean values of the performance parameters from the

solution at these points.

Since the solution at those embedded points is not the steady-

state solution for all time, the symbol Pk will not be used to

represent the limiting probabilities. Instead the symbol ffk will be -_

used. Thus, the discrete-time limiting probability equation becomes

[*o**1 * '" ...oR"1 "" I [P] , (4.61)

whore [P] is the one-step transition matrix.

The state-transition-probability diagram for the GINi model is

depicted in Figure 4.10. Note that a transition from state i to j where

P1 i+

Figure 4.10 State-Transition-Probability Diagram for the GIN/1 System. ,

% %.%0
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J>i+l is an impossible situation since only one arrival can occur

during an interarrival period. On the other hand. up to i+l departures

can occur during an interarrival period, therefore all transitions to

state J where O.&j~i+l are possible.

In order to determine the form of the one-step transition matrix,

note that the following relationship exist between states 3n+ and Xn

In+1 - Xn + 1 - Bn ,  (4.62)

where Bn denotes the number of departures between the nth and (n+l)th

arrival. Thus, the form of the one-step transition matrix is

1-b0  b0  0 0 0

I bm bl b0  0 0 c.
30

1.b b2  b b 0 ...

. .... ... *. 1

(4.63)

where bn = P(n services during an interarrival period]. Recall that the

elements of the one-step transition matrix are Pij, and note that

nmi+l-J. Also note that the case J-O is treated separately because, if

j-0, it is not sufficient to say that i+l-J customers were served

during an interarrival period. That is, they could have been served in I

less time.

%N?
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In order to calculate ba, recall that if the service process is

Norhoviano the service time is exponentially distributed. Rece, as

long as there are customers to be served, the aumber of services in any

length of tine t is a Poisson random variable with mean pt. Thus, if

AMt) is the PDF of the interarrival times, then by conditioning on the

time between successive arrivals:

* o-Pit (:t) no

bn  31 dA(t) O~ani+l . (4.65) ' "
n !*

Hence, in component form the limiting probability equation becomes:

xk " Ik+n-1 bn k>l, (4.66)

n 0

or

Rk - Uk+n-.1 f nldA(t) k>l. (4.67)

The Ro equation has not been included since it contains no new

information, it is redundant. The value R0 can be determined from the

fact that the limiting probabilities must sum to one.

Unfortunately, there is no easy way to solve this last equation,

however, it has been proven that if L/A ( 1 (the necessary condition -

for the limiting probabilities to exist), then the form of the solution

is
Nk - op , (4.68)

where - a number between 0 and 1.

and c - a constant which will be determined
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[TAKMh2J. Substituting this into the last equation leads to

"ok . 1. aI°fa - &A > S
n 4u-l _______

op - [ A~topt)

- f- f -  d(t) .-. p

o 6-0 (4.69

Sk-i -P t(l-) (t) , (4.70)

o. . .,o

.' .- ..'~,

- - (i-,t tAlt) . (4.70)..,.,:

fo

Observe that this last equation is Just the Laplace transform of a(t)

evaluated at p(l-0). That is

a a) a (F-P ). (4.71)

The exact value of p usually can only be dotermined by numerical

analysis (such as Newton's method).

The constant a can be determined from

k" 1. (4.72)

which implies "

9.'.

I

* -. -°* oS• -S* - -



%4%

* I - 1. (4.73)

o - (l-ill. (4.74)

Boscoe. k .. .
S- I*k (1-l,

who re

a (p-pI). (4.75)

It is important to emphasize that is ' sot the steady-state

probability of k customers is the system. It is probability that an

rrivis8 oustomer finds k customers is the system. Now, if an arriving
•/

customer find k customer in the system, it follows that his expected

response time is (k+l)Ip (this is true regardless of how such service

the current customer has already received sinc the service

distribution is Markovian and thus nomoryless). Hence, the mean

response time can be determined by conditioning on the number in the

system when a customer arrives. That is

R - B(timo in system I arrival sees k] pk(1-p)

k -

k-0

- I (4.76)

where the last step follows from the ideatity
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kum k~ ) (4.77)

The mean values of the other performance parameters easily follow:

L - - (4.78)

1gRi1p (4.79)

Lq = ;Lq - ~ 0(4.80)

4.2.1 CoM eats on the G/Nim Queneint Model

The Glumn queueing model represents the contention for a Identical

severs that operate independently and in parallel under the assumption

I that the interarrival times have an exponential distribution. Similar

to the GIN/i system if this system is observed at the arrival instants

then it appears to be a Markov chain. Hence it is possible to calculate

the probability that an arriving customer finds k customers in the

system. However, no one has been able to derive explicit expressions

* for any performance parameter. The details of the analysis are

significantly more complicated than those for the 0/Ill system and will

* not be $Iven here. The interested reader is referred to Gross and

Ileinrock [G10S741 [KLE1751.

4.3 Comments on the Solution of a Somi-Markov Process and the General

ime ocLUA

It should be obvious that a Markov process is also a semi-Markov
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process. Therefore, if relationships could be developed that relate the

solution of a semi-larho process to that of its general time process,

them the N/M/i. N/G/1, and /1i systems could all be analyzed as somi-

Iarkov processes. Indeed suck relationships have been developed

(FABI61] [CINL691 [CINL7S$. Rowever, eash case must be treated as a

separate problem. The developmnat of the relationships depends upon

renewal thoory, and requires far too such background material to be

presented here. The interested reader Is referred to the references by

Cinlar, who developed muck of the theory. The analysis is by no means

simple. The author spends as entire okapter (chapter 10) developing the

relationships for the N/G1l and G/N/1 cases [CINL7S]. The primary

results are that the solution of the sami-Markov process for the M/G/1

case is the same as the general time solution. whereas the general tine

solution for the G//1 case is

1-- k-0

Pk=
h- pki(i-p) k1i. (4.81)

It is somewhat ironic that the proof for the X/9/1 case is considerably

more complicated tha that for the G//i1 case.

4.4 C ents on the G/G/1 uoeueina Model

The G/1 queueing model represents ocontention for a simile server %, -

under the conditions that both the interarrival times and the service

times have general distributions. Clearly, this case includes the
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N/l/l, /6/1/ , and GI1/1 cases. Therefore, if a solution could be

obtained in terss of the system parameters it would be valid for the

other cases. Unfortunately no one has derived such solution.

The difficulty in analyzing the model stems from the fact that

neither the arrival nor service process is momoryloess. Hence, it is not

possible to define a Karkov or seomi-Iarkov process where the state of

the system represents the number of customer. However, it is possible

to define a semi-Markov process where the state represents the amount

of unfinished work in the system. The embedded process is obtained by

looking at the system only at customer arrival instants. Thus, the

unfinished work at these points is the same as the customers response

time, L

The details of the analysis will not be covered here, but sone

comments on the analysis and form of the solution will be discussed.

The somi-Markov process is a discrete-time continuous-state process.

Note that this is out first encounter with a process in which the state

space is continuous. The key point here is that in order to obtain a

solution for the waiting time, complex variable theory and spectral

factoring must be used. The procedure involves a certain amount of

trial and error. Unfortunately, the spectral factoring procedure OA

destroys all traces of the system parameters. That is, although it may

be possible to find a solution, it will not be in terms of any of the

system parameters. Howver, assuming that a solution can be found, the

oxpected values of the other performance parameters can be determined

from the waiting time.
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Although it is not yet possible to find an expression, in terms of

the system parameter, it is possible to derive an expression for the

upper bound of L and L The results are:

.1+ Var[A]+VaCrS]) ( (4.82)L I P +  2(l-p)

R j [S] + X.(Var[j+Var[S]) (4.83)
2(1-p)

where

- random variable representing the interarrival time,

LAVE8]3.

4.4.1 Coments an the G//m Quneuna System

All of the conments on the G/G/1 system carry over to the G/G/n

case. However, the likelihood of solving the integral equation by

special factoring is considerable less than the G/G/1 case (usually

impossible [KLIT76]). Bounds on L and R have been derived [LAVE83]:

L i sp + 1[a~](~[]UI 4.84)
2(1-p)

X[Var I]+(Var[S]/m)1

2(1-p) (4.85) .. ,..
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4.5 Co-oluding Remarks

The primary purpose of this chapter was to develop the elementary -

results for the I/G/1 and GI//1 systems. It is not possible to cover

all of the details of these two systems in a single chapter. Indeed

entire books have been devoted to covering those two systems. Perhaps

the most comprehensive reference is "The Single Server Queue' by Cohen

CCOINK691. This reference contains over 600 pages[

'1
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CIAPIM 5

INTOD CTON TO NARXOVIAN QUZUKINS NR1WOWKS

5.1 Introduction to Quouoina Networks

A queueing network is a collection of one or more service centers.

Only networks of Markovian queues will be considered in this chapter. A

Markovian network is one in which all arrivals from outside the network

are Poisson processes and all service times are exponentially

distributed. The purpose of a queueing network is to predict the

performance of a physical system in which there is contention for

resources. The resources are represented by the servers in the network.

Queueing networks are usually classified as being either open or closed

An open network in depicted in Figure 5.1. A customer enters one of the

service centers from outside the sstere, waits for a server to become

free, receives service, and departs the service center. Upon departing

from the service center the customer, according to fixed routing

probabilities, either enters another service center, reenters the same

service center or exits the system. Open networks are used to model

systems in which the number of customers competing for resources can

be potentially unlimited. A closed queueing network is shown in Figure

5.2. In a closed queueing network the number of customers in the system

is always constant. After a customer completes service at a service N .

center, he either enters another service center or reenters the same

service center. Closed networks are used to model systems in which a

fixed number of customers contend for the resources.
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Figure 5.1 An Open Queueinug Network.

Figure 5.2 A Closed Quaeein Network.
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5.2 Burkes' Theorema

Before surging into queueing networks first consider the simple two

node (service center) network of Figure 5.3. Assume that both service

Figure 5.3 A Simple Tandem Quooiaa Network.

cemters contain a sinle server and that the service tines are
'e .

exponentially distributed with mea l/ep at node one and //p2 at node

two. Also assume that the arrival process to mode one is Poisson with

rate X. Thus the first node is exactly am /i/ queue. In order to

analyze the second node the arrival process feeding it must be

calculated. Clearly, this is the departure process of node one. Let

D(t) denote the PDF of the iaterdeparture time between customers

leaving node one. When a customer departs mode one, either a second

oustomer immediately starts service or the quoe is empty. If the queue

is empty, then the time uatil the meat customer departs is the sun of

two independent random variables: the first beimg the time umtil a mew

customer arrives &ad the second his service time. The density function

of the sun of two independent random variables is the convolution of

the individual density functions [KLE1751. Therefore. it is easier to

work with the density function and Laplace transforms and then convert

104

%W

015'



back. Lot d(t) denote the density function of the interdeparture

pro.ess at sorvioce center one and d (a) its Laplace transform. The

conditional Laplace transform densities are :

de(S)Iuode one empty - A_- (5.1)
S+x. S+P

and

d (S)IJode one nonmpty - (5.2)
S+P

where the subscripts have been suppressed since all variables pertain

to service center one. The probability that an M/M/1 queue is nonempty

was calculated earlier and is )I/p. Therefore the unconditional Laplace

transform density is

,,S,, [+). + ,,, S+I S,.
and

d(t) -*-).t
.  (5.4)

Nence, the interdeparture PDF is

D(t) 1 1 - •a. (5.5)

Thus the departure orocess of am KIM/i orocess is exactly the same as

the arrival process1 This startling result is usually referred to as a.

Burka's theorem [BUMKS6]. He also proved that the same was true for an

M/Mia queue.

In view of Barks's theorem, service center two is also an M/X/i
" ... 'p.-p

queue with mean arrival rate IL and can be analyzed independently of

nods one. It follows that the Joint probability of node one containing .

kc customers and node two containing k2 customers is - p

P(kl,r2) - P1 (k 1 ) P2(h21

4
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-41 kl P (0)]1 [)/P) k 2 P2 (0)]I

- 1/ kl [1-11) 1p2 k 2 [1-1)./2)1. (5.6)

5.3 Open Queeina Networks and .ackson's Product Form Theorem

Shortly after Burke published his work Yackson proved that more *, -.

general networks can be analyzed in a similar manner (3AaS71. The type

of networks he studied is depicted in Figure 5.1 . It consists of N

interconnected nodes. Node i in the network contains mi identical

ervers. The service time of a customer visiting node i is

exponentially distributed with moan lI'i. A customer after reoceiving

service at node i is routed to node J according to probability rij, or %

he reenters node i according to probability rii, or he exits the

network according to probability riO. In addition to receiving

customers from other nodes, node I may receives customers from a

Poisson process outside the network at mean rate k i.

Let yi denote the total mean arrival rate at node i (arrivals from

outside the network plus those from other nodes inside the network).

Since the expected value of the sun of several random variables is the

sum of the individual expected values (irrespective of dependencies

involved), it follows that at steady-state

¥i - Xi + I j rji (5.7)
j-1

where y, rji is the mean rate from node j to i. Hence a set of N

linear, simultaneous equations can be written from which the mean
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arrival rate at each node can be determined. It also follows that the

mean throughpit, TI n Ti.

Jackson proved for this class of networks that the joint

probability distribution is

P(kl.,k 2 ,...,kN) - Pl(kl) P2 (k2 ) ... PNlkN) (5.8)

where

Pi(O) (Ti/pi)ki / kit (ki 01O....mi)

Pi(ki)-

ki ki-m

Note that Pi(k1 ) is the same equation that was derived earlier for an

I/K/m queue except yi has replaced ).. The result is known as Jackson's.. . %

product form theorem.

The proof closely parallels that of the birth and death model in

chapter three. In fact a network of larkovian queues is a

multidimensional birth and death model. Recall that for the one-

dimensional birth and death model the probability of zero births in an

infinitesimal interval h is l-Xh+o(h). It follows that for a network of

N nodes the probability of zero births in h is

N~I
[l-).1 h+o(h)] [1-IL2h+o(h)] ... [1-XNh+o(h)] - 1 - + olh)

Similarly, the probability of zero deaths at node i is

1 pi(ki) h + o(h) (5.10)

where %
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M-4

.. fkiP i for kilai

fri(ki )  
ki

pi - mea service rate at quoe i whon ki-I

ki - the number of customers at service oenter i

&I - the number of servers at oenter i. (511

The probability of zero deaths in the networks is

1 -~lp(kj) h + Oh),

and the joint probability of zero births and zero deaths is

I x~ih- pi(ki) h +o(h) .(5.12)

By considerinS all the ways in which a network can reach state

(klk 2 ,...,kN) it turns out that

P(kl,....,kN)(t+h) - [I i h pl(kl) h P(kl,...,kN)(t)

+ Aih P(kl,...,ki-1....,kN)(t)
i-

N9

+ pi(ki+l) h riO P(kl,...,ki+l,...,kN)(t) '-.
i=I . S...,

+ 1 Pj(kj+l-bij) h rji P(kl,...,kj+l,...kl-l, .,kN)(t)

+ o(h) (.13)
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where

ro for i#J

I l for iJ

The first term on the right has already been explained. The second torn

on the right is the probability that the network is in state
%

(kl,...,ki-l,...,kN), and an arrival occurs at node i in time h. State

(kl,...,ki-1,...,kN) indicates that service center i has one less

customer than state (kl,,,,,ki#....kN). The third term is the

probability of the network being in state (kl,....,ki+l,...,kN), and a

departure occurs at service center i, and the departing customer exits

the network. The fourth tern is the probability that the network is in

state (kl,...,k +l,...,k-l,...,k), and a departure occurs at serviceiji)N

center J, and the departing customer goes to service center i. The ij.

terms allow for the possibility that a departing customer reenters the

same service center.

Following the usual procedure of subtracting P(kl,...,kN)(t) from

both sides, dividing by h and taking the limit as h approaches zero,

one obtains a set of differential equations. A set of steady-state

equations is then obtained by taking the limit as t approaches

infinity. The resulting steady-state equations are

X1 + Ipkl)] Plkl,,,,,kN) - Xi P(kl,...,ki-l,...,kN)

i1 1 iini ii

+ pi(ki+l) rio P(kl,..,ki+l, ... ,kN)
I % % .

1 o 9./:.d
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+ JL j(kj+l-Sij) rjj P(kj .... #kj+1,..ki-1#....AN)'

(5.14)

Jackson did not derive the solution from this set of equations as

was done in the one-dimensional case5 He assumed the solution and then

verified that his assumption was correct by substituting it into these

equations. The following relations are easily seen from the defining L

equation for P(kl.k 2 , .... kN)

P(k I ... ,kil-,.kN) Pi(ki) (515

P(kl,...,ki,...,kN) TI

P(k1 , ... ski+l,...Ok N ) _ i_"__.

P(kl".... ki ..... kN) Pi(kil) (5.16).

Plk I ,.. .. kj+l... .,ki-l ... #kN ) Yj Pi(ki) (5.17)
= ~~(5.17) ."'-

P(kl# .... Akio,...,#ki # . .. ,k )  Ti Pj(k +1- ij) ','

N%) 4

Dividing both sides of the steady-state equation by P(kI ... kN)

results in

i~)j+i p i(ki) AI Xi pi(ki) / i + > i rio

+ yi pi(ki) rji / yi • (5.18)
J-1 i-l _-

' "...

Substituting X, =i + Lj rji into the first summation on the right
J-1
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MLL

and adding the result to the double s umation yields:

X)i +5 i(ki)vi rio + i(ki) .(5.19)
i- -i i-l -

Finally, substituting riO 1 - rlj and T- Xj + yj rjj into

the last equation results in both sides becoming identical, and the

proof is completed. V.',

Jacksons product form theorem states that once the mean arrival

rates have been determined, each service center can be analyzed as an

independent U/K/m queue. As in the case of the K/K/m queue the service P

discipline or order in which customers are served is unimportant as _

long as it is work-conservative. The results of Jackson' theorem can

best be illustrated by an example. Consider the problem of finding the .

distribution of customers in the network in Figure 5.4. Assume that

%

'21 -. 4.

r 20Mi U.

Figure 5.4 An Open Queueing Network with Feedback.

both service centers have a single server. The following are the

steady-state equations for all states with two or fewer customers:

111
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X P(OO) - C2 .0 P2 P(Ol)

()+Pl) P(O) ). P(0) + r2 1 P2 P(O°) + C2. 0 P2 P(1.1)

(+p2) P(O.1) p ,i P(1.0) + r2. 0 P2 P(O.2)

(X+pl) P(2.0) X . P(1.0) + r2.1 P2 P(".') + PC 21)

01+2) P(O.2) - p, P(ll) + r2. 0 P2 P(O3)

(X+pi+p2)P(l.l) - X P(01) + P, P(2.0) + r2i P2 P(0,2)

+ r2, 0 P2 P(1,2).

Notice that there are six equations and nine unknowns. No matter how

many and what set of equations are written out there will always be

more unknowns than equations. Thus, there is no way to solve this set

of equations without some form of guessing.

According to Jackson's theorem the solution is

P(klsk 2 ) - (T / PI(O) P2 (0) "

where T, and T2 are the mean arrival rates. The equations for y1 and Y2

are:
T =  + Y2 w2.1 %

T2 Y1 b %

Solving these equations results in 1 7 2 2 /2, 0 . Which tesults in P'.A.,

0k l + k2 (lilkl 112 k2  
-" ..0),

P(k1*k2 1  (1/ 1) (/ P(OO)

It is easy to verify that this satisfies the steady-state equations,

and thus is the solution. 4.

5.3.1 On.p Networks with Feedback

Jackson's product form theorem is not surprising for networks
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without feedback. If Poisson processes are Joined or split the

resulting processes are Poisson. Using this fact and Burke's theorem it

can easily be shown that for a network without feedback the arrival

process at node i is Poisson with mean rate yi"

The problem with feedback is that it- can be proved that the

arrival rocesses at service centers In a feedback loo. are not Poisson ,"..

[LEMO77]. This fact can be illustrated best by an example. Again using

Figure 5.4 assume that customers arrive from outside the network from a

Poisson source at an rate of one customer per hour, and that the mean

service times at both service centers is exponentially distributed with

a mean of 1 msec. Also, assume that the output from the second service -S' i

center is fed back to first with probability r2 1 - 0.999. With this %

extreme set of parameters the output of the first service center tends .-.

to be in bursts. A typical output sequence 
is shown in Fiogure 5.5. The Y

Figure 5.5 A Non-Poisson Input Sequence.

input to the second service center does not have independent

increments, and therefore is not Poisson [ROSS801. At present there is

no exulanation or conlecture as to why Jackson's theorem is valid for

networks with feedback.
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5.2.2 ocal-alanc

Although it was not necessary it turned out that steady-state

equations are not only balanced, but that

Pi(ki) P(kl,...,kN) - X i P(kIja...,ki-1.....kN)

+ i(kjI-bjj) P(kl#...kj+I#9e..ki-l,....kN).

J-l

(5.20)
and

Xij P(kl,...,kN) - ji(ki~l) rjo P(kl...,ki+l#&**#kN) e (5.21)

iiii

These equations are called local balance equations as opposed to the

steady-state equations which are often referred to as global balance

equations. Local balance states that the rate of flow out of a network v~
state due to a customer departing a queue Is equal to the rate of flow

into the state due to a customer arriving at the queue. Clearly the sum

of the local balance equations are the global balance equations. Hence

the solution to the local balance equations satisfies the global N

balance equations. Local balance was discovered by Whittle, and is also

referred to as independent balance [W11T681 [111T91. As an example of

local balance and its use, again consider the network in Figure 5.4

The following ar* local balance equations that correspond to the global

balance equations given earlier:

)P(010) - r250 112 P(0,l)

X. P(1,0) - r2,0 P2? P(l1l)

PI P(110) - ~.P(010) + r2 ,1 P(011) '
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X P(Oo.) - r2,0 P2 P(0,2)

P2 P(o.1) - Ill P(1,o)

X P(2.0) - r2,0 f'2 P(2.1)

Pl P(2.0) - . P(1.0) + V2,1 p2 P(11)

SP(0,2) - 2,0 P2 P(0,3)

P2 P(0,2) - P, P(1,1)

It P(l, 1) - X. P(0,1) + r2.1 p2 P(0,2)

P2 P(1,1) - p1 P(2.0) .

There are 12 local balance equations and only nine unknowns, therefore

some of the equations are redundant. The following is a subset of the

local balance equations: _

X P(00) - r2.0 P2 P(01)

). P(0,1) - 12,0 P2 P(0,2)

2 P(110) - 2.0 P2 P(1,1)

PZ P(2,0) - . P(l°0) + r2 o1 P2 P(1,1)

p2 P(0,2) - P, P(1.1) % %

. P(2,0) - F2.0 P2 P(2.1) 
-

. P(11l) - r2.0 P2 P(1.2)

X P(0,2) - r2,0 P2 P(0,3)

Solving these equations in terms of P(0,0) results in

P(0.1) - ()./r2o O ) (l/p2 ) P(O,0)

P(1,0) - ().12 O ) (1/Pl) P(O0O) ' h "\
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e(1l) - 2,0 (1/l1) (14i2) P(o0)

P(2o0) - ()/r2 0)2 (1/1l1)2 P(0o0)

P(0o.2) - ()/r2 .o)2 (/P2)2 P(O.0)

P(2.1) - (/r2. 0)3 (1/P1)2 (1/2) P(0.0)

P(1.2) - (X1t2,0)3 (11 1 ) (1112)2 P(0o.0)

P(O.M) - (X/r2.0)3 (1/112)$ P(O.0) I
The form of the solution is

P(klok 2 ) - (lr2O)klkl kl (14)k 2 P(00) .

Which agrees with the solution obtained earlier. This is the only known P

example of a queueing network (with two or more service centers) being

solved by local balance.

It is important to note that to show that local balance exist

Jackson's theorem was used. It is also important to emphasize that

local balance is not necessary for global balance. That is although all

queueing networks discussed thus far have local balance others do not.

Local balance is an important tool that can be used to help determine

if advanced queusing networks have a product form solution. In other

words one can assume local balance and if the local balance equations

are consistent an answer can be obtained. The answer can then be .

verified and used to prove the assumption was true.

5.3.3 A& -Aplication of an Open Qfueuina Network

An example of an open queueing network model is shown in Figure

5.6 [FERR78]. The model represents a mainframe computer that consists

of an input/output processor (IOP), a central processing unit (CPU). a
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bI
#3

#1 #2 0.75

lOP CPU

0.25 #4

Figure 5.6 An Open Qeueing Network Model of a Computer.

Parameter nane Symbol Valuee .

Mean arrival rate ) 0.7 jobs/s .

Mean input service time 1/1 500.n$
Mean uninterrupted CPU time 1/42a 30.s
Mean drum service time 1l/i3 20.
Mean disk service time 1/1, 80ms
lOP to CPU probability r1  1.00
CPU to drum probability r23  0.75
CPU to disk probability r2 4  0.25 ?

Drum to CPU probability r32  1.00
Disk to CPU probability r4 2  0.90
Disk to out probability r40  0.10

Table 5.1 Parameter of the Model in Figure 5.6.

p.
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drum processor, and a disk processor. Each unit is assumed to consist

of a single server, and the service discipline is assumed to be FCFS.

Parameters for the model are given in table 5.1. The input process to

the oomputer is assumed to be Poisson. All jobs are assumed to be

statistically identical, and all service times are assumed to be

exponentially distributed. The service time at the IOP accounts for the

tin to input and load a job into primary memory. After the job has V

boon loaded it waits its turn to be processed by the CPU. The mean

service time at the CPU represents the mean tine before the job needs a

drum or disk operation. Bocause those operations are slow compared to

the speed of the CPU, the CPU releases the job to the drum or disk

processor and starts on another one. The drum and disk service times

represent typical demands made by jobs. It is assumed that all jobs

that require drum operations will also require more CPU time before

completion, therefore they are routed back to the CPU. On the other

hand it is assumed that only 90 percent of the jobs that require disk

service will require nore CPU time. Two *implications have been made

that violate a real system. First the model does not take in to account

contention for memory, and second a job usually terninates at the IOP

so that its output can reach the external world. These simplications

are necessary in order to get an answer.

Since there is only one entry point and one exit point the moan

throughput rate must equal the mean arrival rate. This is not, however
the case for the mean response or turnaround time whose calculation

will be one of the objectives. Other objectives will be to determine 'p
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all mean queue lengths, the utilization at each unit and the maxinum

input rate before saturation.

The equations that describe the total mean arrival rate at each unit

are:
YT - = 0.7 lop

CP ,.% %.%

T2 1 + 3 +094 CPU .

T3 - 0.75 2 Dru

74 - 0.25 T2  Disk *"?.-'

Solving these equations results in :

-1 -0.7

-40L - 28

3 30). - 21

T4 10). - 7.

Each service unit can now be analyzed independent ot the others. .

The utilization at each unit is
-3 -

P1 = ¥l/pl - (0.7) (S00 10 - ) = 0.35 lOP

P2 M Y2/P2 - (28) (30 10- ) 0.84 CPU % "

P3 - 73/P3 - (21) (20 10-3) = 0.42 Drun

P4 M Y4/P4 - (7) (80 10- 3) 0.56 Disk .

The mean queue lengths at each unit are

PIS

L- - - .54 lOP

12 % %

1= =2 -5.25 CPU
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P3
L3 - P3 -0.72 Drum

P4

L4 - - 1.27 Disk.

The mean number of jobs in the network is therefore :

L- L + L2 + + L4 - 7.78.

The mean response time can now be calculated by applying Little's Law

to the Network, i.e.

L 7.78

M- " L 8" 11.1 seconds/job

The maximum input rate can be determined from finding the minimum

value of . that causes one of the unit to reach 100 percent

utilization. In terms of the parameter X, the utilizations are

P1 - 0.5 X

P2 - 1.2 X..

P3 - 0.6 .

P4 - 0.8 . •

Thus, the CPU will saturate first. Setting P2 equal to one and solving
.f Al '.

for . results in

.,a - 1/1.2 - 0.833 jobs/s

If the service discipline at the CPU is changed to processor sharing, %.%

then all of the results are the same. Although true this statement is

somewhat misleading. The problem is with response time. The means are

the same, but the variance distributions are different.
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ra

5.4 Arrival Rates Devendent on the Number of Customers in the Network .'J

Six years after his first paper Yackson extended the class of L

queueing networks that could be solved in a paper that is considered

the classic of quooin networks [YACK3]. Again he considered only .

networks in which the arrival processes from outside the system were

Poisson and all service times were exponentially distributed. However,

he allowed the mean service tine at each server center to vary almost .4'

arbitrarily with the number of customer in the service center, and he

allowed the mean arrival rate to vary according to the number of

customers in the system. In fact the arrival rate could be varied such

that if the number of customers fell below some lower limit then a new

customer was immediately injected into the system. Also the arrival .

rate could be set such that if the number of customers in the system

reached some upper limit then now customers were not allowed until the

number fell below the limit. By setting the upper and lower limits at

the same value he considered closed queueing networks. The following is

a quote that appeared near the end of the paper 'The discovery of these

theorems resulted from making a sequence of guesses concerning more and

more general jobshop-like queueing systems, and proving successively -,,,.,

more goneral versions of the theorem *

It is easier to handle the arrival process if it is assumed that

all arrivals emanate from a single Poisson source such that new

customers are routed to different service center according to fixed

routing probabilities. Recall that if a Poisson source is split then P F P,

the resulting processes are also Poisson. Therefore, if the arrival .
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procoess is not a function of the number of customers in the system,

then it is equivalent to the multiple Poisson sources in Jackson's

first paper. The mean arrival rate at each queue can not be determined

before hand if the arrival rate 
varies according to the number of -

customers in the system. Kowever, the mean number of visits a customer

makes to a service center can be determined. Let e i represent the mean e J,

number of times a customer visits service center i. Then M . ,

Sim rn t + e rji (5.22) W..%

where rOi is the routing probability that a new customer emanating from !N

the Poisson source visits queue I first. .% %

Jackson proves in his paper that for these more general networks

of Markovian queues that the Joint probability distribution also :

satisfies product form. More precisely,

X(S(K)) f (k1 ) f 2 (k2 ) fN(kN)
P(kl....kN) " (5.23)

N) G

where

ki

fi(ki) = H ei/gi(a)
awl

K-1

N
o) [.(SK))i fi~ki)]V
all feasible

states
'M

K = k1 + k2 + + kN
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Pi(a) mean service rate at queue i when it contain 'a' customers

and , " %. %.

(a) = mean arrival rate when the network contains 'a' customer.

The role of G is that of a normalizing constant to insure that the

probabilities sun to one. Of course there is a solution only if G

converges to a positive number less than infinity.

As an example of the product form solution consider a two service

center network with the following parameters 5.5

(a) / (a+I)' where %)0 and xj0 ,,

Pl(a) b sy where b>0 and y20

) az  where 0 and z:0

r0 1  r 1 2 r2 0 =1 the other rij 0.

Jackson's theorem states that the joint probability distribution for

this network is k.,k2
(rn/b) (/c WO

P(kl1k2)-

G(K) ((kl+k 2 )!)
x (k,!)y (k21 )Z

The following is a proof of Jackson's theorem. By considering all ,. t

the ways in which state (klk 2 ... kN) can be reached the set of .-'

steady-state equations are

i() Pi(ki) P(k D..,k ) -

).(K-1) r0i P(k1 .....,ki-l,.... kN )  ,

i!1
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VV.

+ pj(ki+l) rio P(kl,...,ki~l,...,kN)

+ iaj(kj+l-Gij) rji P(kl....kj+1.....ki-1 .... kN).

(5.24)

Now the following relations are easily seen from the defining equation

for P(kl,...,kN)
Plkl ,kll, kN )  llkl N)

P(kl....,kil...,kN) •1 #I.k-) (5.25)

P I s .... klvl .... A N )  ei ).(I 1)l

P(kl,....ki.....kN) Ii(ki+l) (5.26)

Plk 1 ... A j+1,... ,k lI.... ,kN  oj pi(ki) :•.

=__ _ _ _ _ _ _ __ -(5.27)
P ike.. . k i . .. k i ... AN )  i PJ(kj+l- ij) -

Dividing both sides of the steady-state equation by P(kl ... kN) yields

I(K) + I pi(ki) - [pi(ki) r01  i e l] + )(K) ei rio
i-i i- i-i '-

5;-.

+ pi(ki) rje e/ei . (5.28)

i-1 iml J-. .

Substituting r0i - ej rji into the first suIation on the

J-1

right and canceling gives
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X(K) -i).(K) ei rio (5.29)

Substituting definitions of e i and rio shows that the assumed solution

balances the steady-state equations.

Several special cases are of sufficient interest to discuss them

separately.

5.4.1 The Constant Arrival Rate Case -'

If the arrival rate does not depend on the number of customers,

then for all 'a', I(a) - = constant and ).(S(K)) - )K-1. For this case

the steady-state probabilities are

XK-l f1(k1 ) f2 (k2 ) ... fN(kN)-

P(kl,...,kN) - G (5.30)

where fi(ki). K, and G are the sane as before. Multiplying the

numerator and denominator by ) and letting G absorb the X in the S.

denominator results in

D l fllk)] [2Lk f2(k21)] E fN(kN)] (5.31)
P(kl,...kN) G.)

N) G "

Let si(ki ) ) ,ki fi(ki). That is,

ki
gl(ki) - H .

X ei/ai(a) " (5.32)
a-0

In terms of gi(k i) the steady-state probabilities are

g1(k1) g2 (k2 ) ... gN(kN)
P(ki...,kN) (5.33)

G
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Since the network is open all states are feasible and

kl-0 k2-0 kg-0

- ~gl(kj) F s 2(k2)l g N(kN) (.4
k1-.. [2 - k!Ws0

Notice that G factors into terms where each tern involves parameters

for a single service center. It follows that P(klo.o..kN) factors into

terms that involve a single service center. That is

P(kl....,kN) - P l(k) P2 (k2
) ... PN(kN)

where -i~i
P(kt) i(ki) SIMI) •5.35)

Thus, the distribution of customers at the service centers are

independent, and the distribution at each center is the same as for a

one-service-center queneing system where customers arrive from a : 5

Poisson process with mean rate X *I. and the service completion process

is identical to that of service center i. Also, since eI is the mean

number of times a customer visits service center I, it follows that for

this case ). •i is indeed the mean arrival rate of customers to center 7-7.

i. Furthermore if center i contains mi servers and

ki Pi  for ki.n-
pi(ki) - *

mI Pi for ki2 . (5.36)

then the results are of course the same as in section 5.2.
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5.4.2 Closed Networks

A closed network is one in which the number of customers in the b

.

network remains constant. Jackson considered closed networks as a

special case of networks in which the arrival rate varies according to

the number of customers in the network. To keep the number of customers

at some constant value K, he set X(k) - 0 for k2K and M(-1)-. Thus if

the number of customers falls below K a new customer is immediately

injected into the network, and if the number of customers is K, new

customers cannot enter the network. This is equivalent 
to a network in %

which the same customers circulate eternally.

Unaware of Jackson's work Gordon and Nowell published a paper on _V

closed networks. It appeared four years later in the same periodical in

which Jackson's paper appeared [GOD67]. They acknowledged later that

their formulae for steady-state probabilities could be obtained by

specializing the parameters of Jackson's more general model. However,

researchers at the time were unaware of this and treated Gordon and

Newell's simplified notation and results as independent work. Even

today credit is more often given to Gordon and Nowell.

The approach used here is similar to that used by Jackson. For a

closed network M(S(K)) is assigned the value of one, and since riO

equals zero for all i.

si - ej rjj (537

By considering all the ways in which state (kl,k2,...,kN) can be

reached the steady-state equation is
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pik)P(kL.... kN) - I,
4-6

From the defining equation

______________________________) e~j p (ki)

Dividing both sides by PNkl....,kN) results in

' ij(kj) - ~~i(ki) rj ej ei 5.0
i-i i-i J-1

Using the definition of ei or more precisely the fact that

L[rjji ej / il - (5.41)

show# the equation is balanced. Hence the solution satisfies the

steady-state equations..

Again not only ar* the steady-state equations balanced, but it

turns out that

,ii(ki) P(klJI...ekN)- 
A

(5.42)

The implication is that local balance also applies to closed networks.
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Notice that if all of the es are multiplied by a constant, then

the set of N equations defining them is still satisfied. Hence, for a

closed network there are only N-1 independent equations. The solution

is to assign one of the *Is an arbitrary positive value. Only their

ratios appeared in the proof. The es in a closed network are often

referred to as relative throughputs. .,

Although from a theoretical point of view any positive value can

be assigned to one of the *'s. The value selected does affect the .V

normalizing constant, G, and can cause numerical problems such as

overflow or underflow. Compensating for the fact that the magnitudes

are not know is only one of the purposes of the normalizing constant. ..-

It would still be required even if the magnitudes were known before

hand. The normalizing constant, G, is virtually a function of every

parameter in the network.

It is remarkable that joint probability distribution of a closed

network of queues with exponential servers has a product form solution.

That is, the form of the solution is the product of N queues with

Poisson arrivals and exponential servers, divided by a normalizing

constant. What makes this so remarkable is that none of the arrival

processes are Poisson at any service center. Again no one has an i-

explanation of why this is to.

Even though the solution has a product form the distributions at

the individual service centers are not independent since their sun must "

always equal the same value. This is the primary reason that a closed

form solution for the normalizing constant can not be obtained.
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Determining the normalizing constant by the obvious way of finding all

of the unnormalized probabilities can be and usually is a difficult

problem. By considering the number of possible ways that customers can

be distributed in a closed network the number of states can be

determined. This problem is equivalent to that of finding the number of

-

.4

permutations of N-l+K objects of which N-I are the same and K are the

same. Thus for a closed network with N service centers and K customers

the number of states is

( N + K - D N + S ( ) - 11 .4 1' , .,

(N -W KI(5.43)(N-1)1 K! \N-1 " N

For example for a network with 8 esht service centers and 20 customer

there are 888,030 states. Fortunately other techniques 
to determine the ,

normalizing constant exist. One of these will be discussed 
in detail in ',-

Chapter 7.

5.4.3 An Aulication of Closed gueueina Networks

As an example of a closed network consider the model in FigurS ,11,

5.7. Again assume that each service center has a single server, and

that all jobs are statistically identical, and that all service times

are ezponentially distributed. The parameters for the network are given -

in table 5.2. A Job making a CPU to CPU transition is regarded as V

having left the system and having been immediately replaced by another

Job. Thus, the flow along the CPU to CPU path represents the system

throughput. The objective is to determine the mean number of customers

at each service center, the utilization of 
each service center, the,\? ,.

mean throughput, and mean response or turnaround time of a job. To make
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Figure 5.7 Closed Network Central Server Model.

Parameter name Symbol Value

Mean uninterrupted CPU time 1/p, 1035
Mean drum servie time 1/25i
Mean disk servie time 1/P3 l0.
CPU to CPU probability 0.1
CPU to drum probability r12  0.8
CPU to disk probability r13  0.1
Drum to CPU probability r21  1.0
Disk to CPU probability r31  1.0

Table 5.2 Parameters for Figure 5.7.
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the problem manageable assume that the 
number of Jobs in the system is I

three,

Since there are three service centers and three jobs in the

network the total number of network states Is

- 1 21 31

The state-transition-rate diagram for this network is depicted in -'

Figure 5.8. The ten steady-state or global balance equations are:

P1 P(3OO) - i rll P(3,0,O) + 512 P(2,1.O) + p13 P(2.0.1)

[pl+p3J P(2.0.1) - p, rll P(2o0ol) + i r13 P(3,0oO) 
%

+ P2 P(l.1.1) + p3 P(1.0.2).,MN

[111+ 12] P(2,1.O) - p1 rll P(2,1.0) + PI r12 P(3.O.O)

+ P2 P(1.1,) + A13 P(1.2.0) "

[pl+pT.] P(1O,2) - p, rll P(1,0o2) + p, r13 P(2o0.1)

+ P2 P(0,1,2) + P3 P(OO,3)

[l+P2+P3] P(1,l11) - l rll P(1,1,1 ) + Pl r1 2  P(20,1) 
-.

+ p, r13 P(2.1.0) + P12 P(O.2.1) + p13 P(O.1,2)

[Pl+P 2 ] P(1,2.0) - p, rll P(1,2,O) + pI r12 P(2.1.0) r,

+ P2 P(Oo3,0) + P3 P(O.2.1) .% 1

53 P(ODO,3) - p, r13 P(1.O,2)

[12+P $ ] P(O1.2) - i r1 2 P(1b0.2) + p, r1 3 P(1.1.1)

[12+P 3 ] P(O.2.1) - plr 12 P(11l) + 5lr 13 P(1o2,O)

P2 P(O.3.O) - P1r1 2 P(12,0)
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Figure 5.8 State-Transition-Rate Diagram for the "t
Central Server Model with Three Yobs.
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Of course the steady-state probabilities could be determined by solving

these ten simultaneous equations. Another approach would be to write P66

local balance equations and solve these. For example the local balance

equations corresponding to the fifth global balance equation are:

11 P(1,1,1) - p, r,, P(,1.1) + P2 P(0.2.1) + p3 P(O.12)

2 P (1 1 1 ) = 1 r12  P (2 ,0 ,1) 
J

P3 P(111) = P1 r13 P(2,O) . .a

Neither of these approaches will be used here. The method described by

Jackson will be used instead.

The equations describing the mean number of times a Job visits a

service center are

e - = 0.1 @1 + •2  + •3

• 2  - 0.8 • 1  a.,,

p3  - 0.1 el o

Observe that there are only two independence equations. Although any

positive value can be assigned to one of the eas assigning 100 to el

causes the ratio of ei/pi to be integers. Selerting a, as 100 results

in : .

.7%

6 1  100 and el/1 1I%%

e2 = 80 and e2 /P2 - 2

e3 - 10 and e3/P3 m 1

a.+".'
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The Joint probability distribution that service center one contains

k, jobs, service center two k 2 jobs, and service center three k 3 jobs

is

P(kk 3  fl(k) f2 (k2 ) f3 (k3).k 3o )  o

k0
( /  k i  ";

where fi(ki) R (-i/Pi) l .k)
l (1i/i) k l  (j/ ) k 3

(e 2 /P2 ) (034 3)Hence, P(k1,k2 .k3) G %.

The ten steady-state probabilities are therefore:

P(1,l) - 2/G

P(1,O,2) - 110

P(2,0,1) - 11G

P(O.1,2 - 2/G

P(O.0,3) - 1/G ,. --

P(0,2,1) - 4/G ""

P(2.1,0) - 1/G

P(31OO) - 1/0

P(1,2,O) - 4/G

P(0310) - 8/G

The normalizing constant is determine from the fact the the

probabilities must sun to one. More precisely,

P(kl,k 2 ,k3) = 26/G = 1 • -, '...

all states

Hence, 0 - 26. The mean queue length at each service center is
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4.

L i  ki P(kl,k 2 ,k3) •
alstates

L- (1) P(1,1,1) + (1) P(1,0,2) + (2) P(2,0.1) + (2) P(2,1,0)

+ (3) P(3,0.0) + (1) P(1,2.0)

M (11)(2) + (1)(1) + (2)(1) + (2)(2) + (3)(1) + (1)(4) /26

-0.615

L2 (1) P(1,1,1) + (1) P(0,1,2) + (2) P(0,2,1) + (1) P(2,1,0)

+ (2) P(1.2.0) + (3) P(0,3,0)

- (1)(2) + (1)(2) + (2)(4) + (1)(2) + (2)(4) + (3)(8)) / 26

- 1.769

L3 (1) P(1,1.1) + (2) P(1.0,2) 1, (1) P(2.0.1) + (2) P(0.12)

+ (3) P(0.0,3) + (1) P(o.,.1)

- [(l)(2) + (2)(1) + (1)(1) + (2)(2) + (3)(1) + (1)(4)1 / 26

- 0.615

Notice that , + L2 + L3 - 3 as ezpeoted.

The utilization of a service center equals the probability that

the service center contains at least one customer, which is one minus

the probability that the service center contains zero customers. The

larginal probability that the service contort contain zero customers

is:

PI(0) - P(O.I,2) + P(,0.,3) + P(0,2.1) + P(0,3,0) .J,...I

-(2 + 1 + 4 + 8) / 26 - 0.577

P2(0) - P(1.0,2) + P(2.0,1) + P(0,0.3) + P(3.0.0) ".*5

(1+ 1 + 1 + 1) / 26 -0.154
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P3(0) - P(2,1,0) + P(3, O) + P(1,2,0) + P(0,3,O) p.,-.'*

(2 + I + 4 + 8) / 26 - 0.577.

The utilization at the three service centers is :&

Pl M 1 - P1 (O) - 0.423

2 1 - P2(0) - 0.846 e.P"

p3 " 1- P3(01 0.423

The throughput of the system can be determined from the

utilization and mean service time at service center one. If the service

center one was busy 100 percent of the time the number of customer

served per second would be 1/lOns, or 100 Jobs per second. Utilization

equals the long run percent that the service center is busy. Hence the VPV,'

number of Jobs passing through service center one is 0.423 x 100 - 42.3

jobs/s. The probability that a job makes a CPU to CPU transition is

0.1. therefore the number of customer completing service (the

throughput) is 4.23 jobs/s. The mean response time can be determine by

applying Little's Law to the network. That is,

3
R 0.798 seconds per job.

5.5.4 Open Networks with Finite Storaae Capacity

Although the form of the solution for a system with arrival rates

dependent on the number of customers in the network was given in %-%-

section 5.5, the normalizing constant is next to impossible to .p'

determine unless there exists a positive integer re such that )(K)

(K*) for [2K*. The most interesting case is when ),(K ) = 0. This is "
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because almost all real systems can contain only a finite number of

customer. Customers that arrive when the system is full are simply

turned away without receiving service. A common example of this is the

telephone system. In fact it was the study of this system that brought

about the birth of queueing theory.

A queueing network with finite storage capacity is equivalent to a ;jl
closed network with K customers. The sources and sinks in the original .4,

network are replaced by a service center with rate jL(k)=),(K0-k). Since

the interdeparture process (time between departures) of this service

center is the same as the interarrival process (time between arrivals)

of the original network, the two networks are equivalent. This is best

illustrated by example. The network in Figure 5.9 is equivalent to a

single service center with Poisson arrival rate ft and finite storage

capaoity K*. To see this first recall that the steady-state solution is

invariant to the initial distribution of customers. Nov assume that all

K customers are initially at the first service center. As long as

S.-.".,

there are customers at this service center the departure process is

K" CUSTOMERS

Figure 5.9 Equivalent N/Nil/K System. 1-
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exponentially distributed with mean pl Now since the departure process

at the first service center is the arrival process at the second

service center, it follows that the arrival process is Poisson with

Sean rate,

Al for k2 (K*
{

) 0 for k2-Kr

Vhich is identical to

-ll l.(K-k2) A fl for k1>O

0 for kl-O

Hence the first service center controls the arrival prlo••ss to the

second service center, and the network is equivalent to the M/M/1/r -

system. Note that K-k2 in this example.

A more mathematical proof that the two systems are the equivalent

consists of showing that the probability distribution of customers is

the same. More precisely,

k2l ,. 2.
P(k2) - P(klk2) =[ I [ -. 5

Solving for the normalizing constant yields:

G l2k
k2 - 0

H 1 • ~[1-(Pl/P)I ] +l /

[l-(h1/I12)J] '-
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Thus, -

- Pk (1/92)k2 (/)

[1- (*l/ 2 ] + 1

which is identical of that for the K/K/l/X* system with X-ft and k-k2.

An example where the customer population is finite and the arrival

rate varies according to the number of customers at the system is the

X/N1I//N system (Chapter 3, Section 3.8). The system is equivalent to

the network in Figure 5.10. Recall that for this system the arrival

M CUSTOMERS

N

;A 2,

;A I

MiM

Figure 5.10 Rquivalent E/KI//lI System.

rate for the KIi/l/M system is

(-k)X for k(I

- 0 " for kw- "''

Thus, K-K and K-huh2 and hence

t (*- 2)X for k2(
o for k- ,
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or equivalently

k1 p, for k1>O

( 0  for k-0 .

Note that in order to show that the probability distributions are the

same K was not replaced by K . It follow that:

k 1 1 JP2 lplr ;1]2 4Y
P( 2 ) " P~k 1 Dk 2 ) "G G

and

[ l/(*-k2)1] (1/Pl)M (P1/PA2) N

-0

O 2-0

and finally

M1 [! '"""
(*k2 1 2~i

kk
e(N). €.,(N-k), L./,) J:

which is the sane as the K/K/1//K system with a-pl and k-k2.-

In general any network with finite storage capacity can be mapped

by this procedure into an equivalent closed network. -. ,
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5.3.5 Service Rates and Subsets of Sorvlce Centers

For a rubset of the service centers the service rate may be a

fuction of both the number of customers in the service center and the

number in the subset [BASK7$J. The following assumes the service

cnters are numbered such that 1,2,....N are in the subset. Let K1 be

the number of customers in the subset and lot ZI(1 I ) be a positive

function such that the service rate of the centers in the subset is

Pi(ki) ZI(I1). For this case the Joint distribution is the same as

before except

fi(ki) : fi(ki) 1 (1lZ(a)) , (5.44)
1

where the symbol :- is an assignment operator and is road as 'becomes'. -

Since this will be used later, and since it is not known to be

proved elsewhere, it will be proved here. By considering all the ways

in which state (kl,k2 ... ,kN) may be reached the steady-state equation

is:

[K+ pi(ki) ZI(k 1 ) + p~i(ki)i P(kl....,kN)

k1K-1) roi P(kl,...,ki-l,...,k N )

+ (K-1) rOl P(h....,ki-l,...,h N )  -
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+ Ii(ki+l) ZI(kl+1) rjc, P(kl.....ki+lf..kN)L

N pikpproPk,.*k~ *esN

+ Sl ii) r ij ZIl...ki41.....k) .,jl,.,il...

+ i(kj+l-) Z(k 1) rji P(klD...kj+lD...ki-l....DkN)
i-il i-

N ~ij(kj+l-Gij) rji P(kl, ....kj~l .... ki-1D-..,kN)

(5.45)

The following relations are from the defining equation of P(kl, .... kN
N):.

P(kl,...,ki-l,...,kN) Iai(kj) Z1(K1 )

P~kl...ki~l...kN) ~iki)for i>M

P (k l ,. . opk i .... k N ) i k ) f o O

P(klD....ki4.1.....kN) Ci )(K)fo iM
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PNklo....ki+1D....kN) - ei X(K) for iONp'.

P(kl .. ,ki.-...kN) Iai(ki+l)

P(kla....k i +.....ki-l**@*kN) - ej pi(k1) for i.J>K

P(kie...,kj#****ki.....kw) 01 ttj(kj+l-Gij) or i,jim

P(kl#***#k J+lb...,ki-l#*e..kN) *j pi(ki)fo j(

P(klt....k ***9mki&9*OekN) Oi IFJ(k +l) Z1 (k1 +lj) ad

P(kl,...,k J+lqee*&ki-l.....kN) ej pij(kj) ZI(K1 ) for J>K

P(kl,...ekj**G*#ki*G69*kd - ePJi(kj+l)an K

(5.46)

Following the usual procedure of dividing both sides by PMkl.....N)

and using these relations results in:

).() + pIi(ki) ZI(kj) +p(k 1 )-

+ pIi(ki) Zj(kj) rOiL 0 i + pi(ki) roi e i

+ X(K)rio ei + ).(K) ri0 ei

+ gat(kj) Zj(kj) rj ej /i + pi(ki) rji ej Isi
i- Jl1 J%0l

Nj N

+ pik)Z](k1 ) rji ej Iei + pik)r 11 ej / e1

i-l J(5.47)
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Combining *he third and fourth, f if th and seventh, sixth and eighth,

terms on the zight yields:

I.[I

L()+ p 'i(ki) Z(kj) +~ s -p~i)ri *

+1 1 Z(k)Z~j) ri +Xij~~ +~ pIk e j *

+ )(k) rioki rj ej

ji-i

K)+ ).() Z1(k1  + ,iiki

i-i i.1 -14*



+. pija(kj) Z]E(k 1) rji *j /i +~ pi(kj) rji ej 61S

(5.49)

or equivalently.

X(K) + i(k) ZI(kI) + i(tki) "

+ ()ri i+ pj(ki) ZI(kI) i i(ki)

i-i(1-)1+O1 i

i--i

(5.50)

Finally substituting

riO rij and e i - rOl + aj rji
Ji- 1i-

balances the equation.

In the next chapter more advanced networks will be covered.
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CEAPTE 6

ADVANCED QUEUEING NETWORKS

6.1 Customer-Classos

In the queueing networks discussed in the last chapter, it was

assumed that all customers at a service center were identical. The

usual way to eliminate this assuption is to partition the customers at

a service center into classes. Within a class all customers are e.IA"

homogeneous, but different classes may have different service time

distributions, priorities, routing, etc. It is important to emphasize

that classes are associated with service centers, and that customers

are distinguished at the service center level. This is more general and

includes the case in which customers are distinSuishod at the network "

level. For example, all customers entering a network may be identical, %

whereas a customer visiting a service center for the second time may -

have a different service time distribution and routing probabilities

than a customer that is visiting the same service center for the first

time. Thus, at the service center level the two customers behave

differently.

The notation used in the last chapter is easily extended to

include classes. A customer at service center I in class s, after

receiving service, proeeds to service center j class t according to

the routing probability ris:jt. The mean service time of a customer at ,'.:.

service center J in class t is denoted " .' .

Fiture 6.1 shows a closed network with two service centers and *%-S

three classes. Service center two is represented by a service facility
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with two queues, one for each class. This depicts the situation where

service time. distributions and routing may be different for different

olasses. In reality there is only one queue at service center two.

CLASS 1 CENTER 1 CLAS-I

i CLASS 2

C ..

Figure 6.1 Network with Two Service Centers and Three Classes.

Figure 6.2 shows a closed network with two routing chains. The

routing probabilities are such that a customer in the top chain (loop)

cannot make a transition to a class in the bottom chain. The same is

true of customers in the bottom chain. Hence, the number of customers -

in the top and bottom chains are both constants. Usually, customers in

different routing chains are distinguishable at the network level.

CHAIN 1

CENTER 1 CENTER 2

cLASS 1CLASS 1

CHAIN 2

Figure 6.2 Closed Network with Two Chains.
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Figure 6.3 depicts an open network with two routing chains. The

number of cstomers in each chain is a random variable. It is assumed , .. *

that both sources are Poisson. However the mean arrival rate of /

customers from source one may depend on the number of customers in

chain one (the top chain). The same applies to the mean arrival rate of

customers from source two. If the mean arrival rates are constant,

which is the usual case, then the sources can be combined into a single

Poisson source, and the network reduces to a single chain. In

formulating open queueing network models, it is often convenient to

assume that there are multiple routing chains. However, for

computational purposes, it is desirable to have only one chain. It is

also true that if classes are used only for routing purposes, then

generally, the number of classes required can be reduced by combining

the sources.

SOURCE 1 CLASS 1 CLASS 1 CENTER 2 SINK1 %

,,,I CHAIN I ~ J ;,:.:

SOURCE? CLASS?2

CHSINK 2

Figure 6.3 An Open Network with Two Chains. .%.v_

.'" . . ,. ,

Figure 6.4 depicts a mixed network. The network is a combination .

of an open and closed network. The number of customers in the top chain

Is a random variable, whereas the number of customers in the bottom

chain is constant.
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CENTER 1 CENTER 2

SOURCE CLASS 1 CHAIN 1 C

.=%- '.

CHAIN 2 ,

Figure 6.4 Mixed Network with Two Chains. *

6.2 Nonexoonential Service Times

Another limitation of the queueing networks in the preceding -

chapter was that all service times had to be exponentially distributed.

The only approach for dealing with nonexponential service times is to

represent them by a combination of series and parallel stages in which ".

the time spent in each stage is an independent random variable that is

exponentially distributed. The necessary condition to accomplish this

is usually stated as : the probability distribution function must have

a rational Laplace transform (can be expressed as the ratio of two " ,-

polynomials in a) [BAS75] [IKLEI76] [OBA81] [IAYES4]. This statement

is conditionally correct, however, in order for the probability

distribution function to have a rational Laplace transform it is

necessary that the probability density function have one also. More

precisely,

b () = Bs) -B(O-) (6.1)
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where

b eL) Laplace transform of the density function, !-

B (s) - Laplace transform of the distribution function,
and

B(O-) - The distribution function evaluated at 0-.

The reason for attaching such significance to this point, is that there

are no examples in the literature, and the statement leads one to

believe that it is the distribution function that is expanded to obtain

the stages, when in fact it is the density function. The crucial point

is that the joint density function of the sun of two independent random .. ,

variables is the convolution of the individual density functions, and

therefore the Laplace transform of the joint density function is the -

product of the individual transforms.

The procedure then consists of taking the Laplace transform of the

density function and expanding it into a series of exponential stages.

The obvious way to perform the expansion is to use the method of

ordinary partial fraction expansion. However, this does not yield the

minimum number of stages, and the computation complexity rises rapidly '_b
* S.-..'

with each stage. Although it may not be well known, there are several

versions of partial fractions (COX5]. Any density function that has a

rational Laplace transform can be expanded in the following form ., .

b (s) - b0 + ao... ajlb j  i/(s i) (6.2) .

J.
where z is the order of the denominator, and a+binl. '.

for i-O,,...,z-1 and bz=l. The structure of the representation that
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results from this type expansion is depicted in Figure 6.5. The number

of stages albays equals the order of the denominator. Therefore, when

there are repeated roots, it results in fever exponential stages than

would ordinary partial fractions

QUEUE
I& a a2  8

Al j9jM 2 000 ;An

, b0  b, b2  q b p b,

Figure 6.5 Cox's Method of Exponential Stages.

When a customer arrives at a service facility of the type in .v:',

Figure 6.5, he has a fixed probability b 0 of immediately leaving the

facility, experiencing a zero length service time. On the other hand,

there is a fixed probability a0 that he will enter the service A A

facility. If he enters, then he immediately proceeds to stage one. The

service rate at this stage is ft. and the mean service time 1/pl. Upon

completing service at stage one t.'o customer proceeds to stage two

acoording to probability a, or exits the facility according to

probability b1 . If a customer reaches the last stage, then after

receiving service he exits the facility. The mean service time of a

customer is the weighted sum of the mean time spent in each stage. More

precisely, .%-.
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+ [,+ 2+" + . aOaja 2... a&-1  (6.3)

A little arithmetic shows that

a0 a0al a0 ala2  a0 aia2 "" aR-1 (6.4 )

E()- -+- -+ +"' + (6.

P 2 P3 .

Equation (6.4) is very useful in derivian marginal steady-state

probabilities. It does not appear elsewhere in the literature nor does

the equation that precedes it. 
%

In order to illustrate the procedure assume that the Laplace

transform of the density function is 
-

s 3 + g52 + 22a + 16b'(s) - ""- '" '

4083 + 5s2 + gs +4)

Expanding this function according to Equation 6.1 results is

b ) 3s2 + 14s + 12

4 4 (s+2) 2 (s+l)

1 A 3 C
+ -4---- +

4 s+2 (s+2)2 (s+2)2(s1)

1 + 3 + +

4 4(s+2) 4(s+2)2 4(s+2) 2 (sl)

1 3 2 5 4 1 4 % %-+-_+ d -- W

4 8 s+2 16 (0+2)2 16 (s2)2(s1)
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Cont iaig

r4(@3LU+s 2 8s+4) (3.2+16*+22) - 4(h3jgs2+22 1s,1)(32•2+10+g)1
iL] - [4(L+$2+8+4)] 2  0-

- 5/8

sad from Riuatiom (6.4)

3/4 + (3/4)(1/2) + (3/4)(1/2)(1/6) . 5/8

Is this example all of the pole of the Lsplse transform te

located o8 the "alstive real axis. Iowover if the structure is going to

be applied to sy desity fusntion of s somuelative random variable.

thon the poles may osea snywhere is left-half plane. This implies that

the time spent is a stage may be a ouiples somber, &ad that the '..* '

probability of &&kiss a trasaitiom oat of this state i n a3

itfimitesimal amount of time is also complez. All of this leads to the

eoselusiou that the simple linear balasee oquatioss of the preodieg

%. echap t er sew b es * o mp l ex q utio s with co mp l ex p ob abil it i e. T %.

interpretatio is that the stages are purely artificial. They are only

tatrodused as a mathematicsal tool for the representatiom of

soneaposestil service times. These facts may be disturbin but they

sheuld set be. They are esactly the same prialiples that are need is

circuit analysis. Thor at@ so couples voltages @ad curres is an

electrical network. Cemplex embers are letrodmeod solely for the

purpose of analysis. At the end of the analysis all of the results are

reel. The some is tru here. Althou h the probability distribstiou at a

fictities stige say be couples, the distributlon of cstoners at real

1de



service centers are real.

Boforsdparting the subject it should be pointed out that the

problmnsi-Vecome even worse if ordinary partial fractions are used. Not

only oa& the time spent in a stage be complex, but the routing

probabilities may be negative. Again, everything at the cnd turns out

positive and real. For a more formal justification of complex

probabilities, the reader Is referred to the article by Cox referenced

earlier. For a justification of negative probabilities, the reader is

referred to the article by Bartlett [BART4$]. Unfortunately no matter

which method is used, if the coefficient of variation CV (standard

deviation divided by the mean) is small, the number of stages is -

approximately i/CV2 [C55J].

Finally, in order to incorporate Cozs method of stages into

queueing networks with multiple classes, additional subscripts are

required. Figure 6.7 demonstrates this. This first subscript is the

service center, the second the class, and the third the stage.

QUEUE I

, g 1~ ~c2 ai 2  I 1

Ric I 1U.c - 00

J _J

Pilre 6.7 Notation Required to Incorporate Cox's Method
of Uposeatial Stages into Queueing Networks.
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6.3 Service Disciplines

In the qususing networks of the last chapter, the distribution of

customers at a service center was invariant to the service discipline

as long as it was work conservative. The reasons for this were that all

customers were identical and all service time distributions

exponential. If. however, there are customer classes associated with a

service center then all customers are not identical, and the order in %

which customer are served plays an important role. The same is true if

the service distribution Is not exponential. This is because the

exponential distribution is the only one that has the smoryless

property. Thus, if a customers service is interrupted the probability

of a transition to another state is not the same as before service was P..

interrupted. The role that the service discipline plays should become

clearer in the next section when the state space to discussed.

6.3.1 Presuntive and Nonureomstive -

If once a customer begins service he cannot be interrupted, the + '.'

service discipline is said to be nonpreemptive. If on the other hand a

customer can be interrupted, the discipline is said to be preemptive. "

If a customer that was interrupted resumes service later at the same

point that he was interrupted, then the discipline is said to be

preemptive resume. If the service discipline does not depend on any 5%

aspect of the customers' service demand, then the discipliae is said .44

to be service demand independent. The following is a short description

of some of the more popular service disciplines: +

1 57 "." .5-
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6.3.2 Firs t-Coae-Fi ret-se rvise

The seo.vice discipline in which customers are served is the order

of theiri-rrival at the service center is called First Come First Serve

(1(PS). It is noapreempt ive and service demand Independent.

7.

6.3.3 Zriorziti

A priority service discipline is One is which customers aree

classified into types and assigned a priority according to their type.

The seat customer to be served is the one that has the highest

priority. If more then ORe customer has the same priority the one that

arrived first will be served first. If an arriving customer cea

interrupt the service of a customer with a lower priority then the

discipline is called preemptive priority. If service c&ant be

interrupted, it is called nonpreemptive priority.

6.3.4 Rounoia

Almost all interactive computer systems use the Round-Robin (RI)

srvies disciplie or some derivative of it. It is also referred to as

time-slicing. It is defined with respect to a fized interval of tine

called a quatum (or time-slice). Customers are served by a single

server in first-come-first-serve order as long as their service tines

do aet ezeced the quantum. Whom a customer's current service time

reaches the quantum, he is preempted . A preempted customer reters IJI

the queue at the ead (as if he had just arrived). &ad waits to receive

a additional quatum of service. Bash customer repeats this process

until his service demand is satisfied. The advaatage of this disciplise

%0



is that no customer has to wait a lons period of time before receiving

some service.-Thus. customers with short service demands may arrive

after customer with losg service demands and finish ahead of them.

6.3.5 Proessor-IMariIa

The service discipline in which all cstoners receive equal and

simultaneous service from a single server is called Processor Sharing

(PS). That is, if there are k customers at the service center then each

customer simultaneously receives service but at a rate of (1/k)tk the .

service rate . When a new customer arrives at a service coter, he

immediately besis to receive service at the expses of reducing the

service rate to the other customers. Who a customer completes his

service, the shat of the server he was roceiviag ie divided equally

among all of the remaining customers. The PS service disciplino casnot

be actually implemented, but is an eacellent approximation of the .'

discipline whom the quantum size is small compared to the mean service ..S

time. Analytieal results are much simpler than those for II.

6.3.6 Last-C rI-Fiat-Serre-Pree--t io-Is-

A service discipline that is strictly preemptive is last-come- %%

first-serviee-proomptivo-roouo (LI IP). Whom a new customer arrives

at the service center, he interrupts the customer that is receiving

service &nd immediately starts to receive service. Whom a customer

finishe being served, the customer that was last isterrupted reses

his service. Although this servieo diseipline is rarely used as

practice, it is inleuded boease most of the results that hold for PS

159 N# .''S.t --w
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also hold for LCPSPR.U

6.3.7 Infinite Server&

If the number of servers at a service center is infinite or at

least equal to the number of customers that can demand service

simultaneously, than the service center is said to have an infinite

server (IS) service discipline. Customers always begin receiving

service immediately upon arrival. therefore there is no service order

r wating line. Also, there is nver contention for a server. The

servers usually do not represent physical resources. Service centers of

this type are used almost exclusively to represent delays that occur in

real processes. It is always possible to coalesce IS service centers V

iato a single service center by incorporating now classes.

6.4 The State Suace ...

As previously stated. in order that a proeess be a Narkov process.

it Is mecessary that the state of the process summarize all pertinent

past history. For a service ceater with multiple classes sad/or

aoueapoaeatial service times, the history that must be contsand is the

state depends on the service discipliae. Fer example. if there are

mualtiple dilase at a service center sad the service discipline is

VCII. then the state mast ceutsa the order sad class of customer ia

the queue &ad servie facility. It the service tie* Is aoaezPOSeatisl

sad the servie diseiplise is processor shariag. them the state must%

co2asa the stage of service that each customer is La. It there are

160 1.
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multiple classes sad noazponential service times and the service

disciplie is preemptive, then the state must contain the order in -

which customers are to be served, the class of each customer, and the

stage of service that a customer was in before he was preempted.

In order to keep the notation manageable, the state space will be

defined only for the class of queueing networks that have product form .. >

solutions. It makes little sense to do otherwise, since at the present

these are the only networks for which exact solutions can be obtained.

zeeptions are closed networks with a small number of service centers -:

and customers (See Chapter 7, Section 7.4). The notation and many of -.

the results in this chapters are from the article 'Open, Closed, and

Mixed Networks of Queues with Different Classes of Customers' by "

Baskett, Chandy, Nuts, and Palacious (BASK75].

Service centers will be referred to as types FCPSI//, PS, LCFSPR.

or IS according to the following:

FCFS/lI - The service center has a single server and the service

discipline is first-como-first-serve (FCFS). In addition all customers V

must have the same service time distribution and the distribution must

be exponsntial. The service rate may not depend on the number of

customers at the service center (later in this chapter this restriction

will be removed and multiple servers allowed).

PS - The servie center has a single server &ad the service

discipline is processor sharing (i.e.. when there are k customers each

is receiviag service simultaneously at a rate of l/k seconds of service '.-

per second). Mos elass of customers may have a distinct service time .
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distribution, however all density functions must have rational Laplace 4

transforms. ,

LCISPK - The service coter has a single server and the service

discipline is last-come-first-serve-proemptive-resume (LCFSPR). Bach

class of customers receiving service at this ceater may have a distinct

servies time distribution, however all density functioas must have

rational Laplace transforms.

IS - The number of servers at this type of service center is

infinite (or at least equal to the number of customers which can be

demanding service simultaneously st this center). Back class of

customer receiving service at this center may have a distinct service

time distribution, however all density functions must have rational -

Laplace transforms. Service centers of this type are said to have an

infinite server (IS) serviee disoipline.

Any queueing network composed of service centers of these types

has a product form solution. The next section is concerned with the ..*

Justification of this. The necessary conditions is order for a network

to have a product form solution are : (1) the service discipline is .-'Ir. 1

FC-S and all customers have the same service time distribution %
Ire

regardless of class, or (2) the service discipline at the service

center must be suh that every customer starts to receive some service

immediately upon arriving [CIAN77] [CIAN83I. Service center types PS,

LCPSPl. and IS satisfy the second condition. Although there may be

other service disciplines which satisfy the second condition they are

of little practical signifioanee and will not be discussed here. .'.
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The state of the network with N servioe centers and C classes is a

vector (zl,Zs...,xN) where zi represents the conditions prevailing at

service center i. The representation of xt depends on the type of

service center i.

If service center i is type FCFS/l/, then

xi m (zil°xi2D...Dxiki) .P%.?

where
ki - the number of customers in service

center i -
and

Zij - the class of the customer jth in
FCFS order. (6.6)

If service center i is type PS or IS, then

wi ' (uil,ui2....,uiC) .where•,,, "

Uio - (a1o,2o • • .9DZicc

and
anc - the number of class a customer in

the nth stage of service
and

Zia M total number of stages for a class
c customer. (6.7) .""

If service center i is type LCFSPR then,

zi  = ( 1 1, Q1 ), (o2, 2 ), .... (ck i-ki)) e o" .,.

where
ki - the number of customers in service

center i
and

(ojtaj) m the class and stage of the jth
customer in LCFSPR order. (6.8) - *
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6.5 The Steady-State SolutionAP

For a -network with C classes and N service centers of type W

FCFS/1T-P, LCPSP1, and IS the steady-state probabilities are given ,.'.

06

by:

f1(zl) f2 (x2) ... fN(zN)
P(zlOx2,...,1N) - ).(S(K)) G (6.9)

where G is normalizing constant chosen to make the steady-state

probabilities sn to one, ).(S(K)) is a function that depends on the

arrival process, and each f is a function that depends on the type of

service center i.

If the network is closed, then X(S(K)) - 1. (6.10)

If the network is open and there is only one chain, then

(S()) (a) 

where K equals the number of customers in the network,

and X(a) is the mean arrival rate when the network

has 'a' customers. (6.11)

If the network is open and there are I chains, then Si,'.

X(s()) n xU (a)
J-1 a 0 J -. r ,

where K equals the number of customers in chain J.

and X (a) is the moan arrival rate to chain j when

it has 's' customers. (6.12)
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%

Is order to simplify the equations for f(a) lot "

on . (6.13

%

If service seater I is type i1I1/. then

If service center i is type PS. the&

fi(xi) - kl (lei* alpe/lsa (l"Gteal)
o.1 (6.15

If servie seater A is type L1CPt. thbe

f i [ea Aicj (l.t1p , - "
i -ic is i e

If service Ceoter i is type IS. the.

f(a 1) - ((eie A 1e 3 p IC ! *5e

All empty product tomes are assigonod the velse of 1

These statements ore presented as a theoren is the paper 1-v

hkett refoesood earlier. T1be fol|oeim to takes diroctiv frou that

paper The teores is prewod by theekiag that the adopeadest

(local) belaseo equetions are satisfied. tI eoee cooe for ohich beee

results apply the independeet belasee equaties reducet t- the 1e9tss

qsstios for the oeS Those r- seotesos Sr. !.e oer@
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Justification gives. Several months were spent trying to prove by local

balance that- te theorem holds for the general network. Unfortunately,

it could only be shows to hold for specific networks (no general WI
types other than those in the last chapter). There are just too many

degrees of freedom. The generalized network contains an arbitrary, but

finite number of service centers each of which way be types FCFS/l/,

PS. LFSPtL or IS. In addition, there Is an arbitrary but finite number

of classes associated with eaoh service center, and for types PS,

LCFSPt. and IS the service time for sech class say be represented by an

arbitrary but finite number of exponential stages. The network may be %

either open. closed, or mixed, and may contain an arbitrary but finite

nmber of chains. If the network is open or mixed, then each open chain %

may have its ova arrival process which may depend on the number of .

customers is the chain.

The conclusion reached is that the theorem holds for the .

seeralized network, but it cannot be proven to do so, at least not by

the technique of local balance. Some other disappointing and disturbing

facts are (1) the equations for fi(xi) types PS, LCFSPR, and IS are %

all incorrect as stated in the original paper (indices and subscript ,

errors). (2) the equations do not appear elsewhere in open literature,

ad (3) there are no examples in open literature showing the theorem 'U'

holds for a specific network. These statements are based on over three

veers of research is this area. The reason for bringing out these

doficencies is that all of them will at least be partially addressed

hore.
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p
6.5.1 A New Justifiction for Networks with Seriy. Centes of Tree

FCFS. PS. and IS

Figure 6.8 depicts an arbitrary network, and Figuze 6.9 a blow-up

view of service center 3. Observe that there are two customer classes

at service center 3 and that the service time distribution of both

classes are represented by Cox's method of exponential stages.

For the moment assume that service center 3 is type IS. That is %

there are an infinite number of servers at service center 3, snd there
'.

is never a waiting line or queue. In addition all customers are

receiving service simultaneously, and no customer or class of

customers affects the service of any other customer. Thus, each stage

behaves as an independent service center of type IS with an exponential

distributed service time. It follows that the network in Figure 6.10 is

equivalent to the network in Figure 6.8. Furthermore, the service

centers and routing probabilities can be relabled as in Figure 6.11 to

eliminate all class and stage subscripts. Although it was not

explicitly stated in the last chapter, a FCFS service center with an

exponential service time distribution and a service rate of

Pi(ki) - ki , for ki>0

is ideutical to an IS service service with the same service time

distribution. Thus, for the network in Figure 6.11

r fk [3k 3 I [4k 4 1 [5k 5  k6 1 [7k

FT 1km* I. 0 1 1a4 e6  1'1-.-.

P k I kI S p6

wbor Pe
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f1(k 1 - °j/la) •

i nI

(Note that the equation for fi(k) is from Chapter $, &ad that load

dopodeat serviso rates will sot be covered uatil later in this

ehapter). Solving for the relative throughputs is terms of the class

throughput* ad rOting probabilities yields:

A~ fi(ki 631 cis 1 re31 r13 341 ]k4
PS k3 l P4 k41

031 r13 r34 C4 5  1 1 [ 32 22 6  1

Ps i 56 6 I-

[032 C26 r67j 1

P7 k7f

Similarly, f 3 (x 3 ) in Figure 6.9 and the product of the fi(xi) over the

equivalent set of service centers in Figure 6.10 is

£311 °31 o310 '311 1

f3( 3 UP 031 a31 1 01al l 1
[e 311 £311 I P312 a £3121

031 a3 10 a311 a3 1 2  1 032 a3 2 0  1

P313 £313 LI321 a3211

03 2  320 11 322 1

P'322 J 32
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Nov eossider the ease in which the service diseiplia at service

sester $ is-paoeessor shariag. There is also never a waiting line or

queue at this type of service seater. more precisely, the server is

shared equally among all esteoners. Thus, the only difference between

service cester types I ad PS is that s unstomer in the first receives

one seosd of servio per senosd and a customer is latter receives l/ki

scoads of service per second. where ki is the total number of customer

is the PS service center. Thus, it follows that service seater 3 ca& be

expanded into a subnetwork of service centers Just as was dose for the

IS case with the ezeption that the service rate becomes

hi
h~itk1 ) Z(r1) * ki for ki)O ,

where i is an arbitrary service center in the subnetwork. and K1 the

total number of customers in the subnetvork. It follows from Chapter

5, Section 5.4.5 that

7 K1 7 7

13 a-1 fn i3.'.

which accounts for the fact that the only difference in fi(xi) for type 4" W

IS and PS service center is that the latter is preceded by ki (the

symbol :- is an assignment operator).

The conclusion is that any network composed of FCFS, PS, and IS

service centers can be mapped into an equivalent network by letting the

stages grow to full service centers. Hence, the proofs in the previous V
chapter are sufficient to cover a large class of networks, but not all N- .

of those considered by Baskett.
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Local halameo was described is the last chapter and is easily

osteod--"o eteose with elasses and mosenpomotial servic, times. It

equates the rate of flow intoe a state due to a Glass • customer

entoring a stage of service, to the flow out of that state duo to a

olase a customer leaving that state of service. From the doooriptie of

local balanco, it is easily seo that each global balanoe equation

(equates total rate of flow into a state to total rate of flow out of a

state) is a sum of local balance equations. Therefore, the solution to

the loal bala e oquations satisfies the global balazce equations.

Some insight can be gained by recalling the origins of global and

local balas equations. global balane equations are derived from the

fact that a quouoing network is a multidimensional, birth and death. ..

Markov proccss. rt is the solution of the global balance equations that -

% .

is important. However if the network is open. there is no way to solve '

these equations mathematically (there are always mote unknowns than

equations). The only way to obtain a solution is to guess. One way of

guessing is to assume local balance. That is. local balance is an

assumption which may or nay not be true. If the assumption is false

then the local balance equations will be inconsistent.

The tchnique and power of local balance will be demonstrated by C..'

an example. Consider the problem of finding the steady-state

probabilities for the network in Figure 6.12. The service discipline is

processor sharing and there are two customer classes. Class 1 and class *

2 customers arrive from Poisson sources with mean rates of and X2

.4
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.

CLASS I

CLAS,2

Pilge 6.12 Type P1 Service Ceater with Two Classes. '
. % U.

respectively (the two sources could be combined, but this will sot be - ::

does here). The service times of class I *ad class 2 customers are

exposetials distributed with mesns 1/p, and 1/% respectively. Since

the service discipline is processor sarain8, the service',rates depend %o.U 'p

on the number of customers in the service center. The service rate of a

class 1 customer is pl/(kl+k2 ), where k, equals the number of class 1

customers in the service center and k2 the number of class 2 customers.

Similarly, the service rate of a class 2 customer is pA2 /(kl+k 2 ). The

probability that a class I customer departs the service center in

infinitesimal time h is [h k, p, / (kck2 )]" Similarly, for a class 2

customer the probability is [h k 2 P2 / (k+k 2)1. Let the steady-state

probabilities be represented by P(kl,k 2 ), where k1 and k2 are the
",

number of class 1 and class 2 customers. The state-transition-rate

diagram of the network is depicted in Figure 6.13.

'a
173

- %



,dh

3,0

2.0

1/2 M2
A2A,'

IA,..-,u, 2

0 ,%0 2X2 2/3 u,

0'1 1,-,,-
AX X22/u

2 2  1/3''$A,

0,1 0,2

0.3a

A. 1 '.x2[

0,22

V.5
.,, *,,.[,,

Figure 6.13 State-Transition-Rate Diagram for Type PS 5
Service Center with Two Classes.
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C% +&)F(O.O) * gi1 (l.O) * 2P(O.l)

(xl~2+P)F(.0)- 1I1P(2.O) +42 IpP(l~l) * ).1 (O)

(XI +iL2uP)P(O.) *IP1.1 + s1Pl0l2)4 + X2PC0)

(X +X+Pj)(2.0 Pa1PCS.O) + tlp2P(2.l) + X P(11)

1 2

(.1)..i2P(.2)a gaP(3 2LP(.) +*IPO

Notioe that there are six equations sad tea unknowns. No matter

how many equations age written out there will always be note equations

than unknowns! The oorresponding local balance equations are:

X2P(O.O) - fta( 1P1,)

).iP(l.O) - 1a1P(2,O)

).2P(1,O) - '2 P(1.1) .

1 1M1O) P O

X P(O.1) - 1ppll

).2P(O.1) - I2P(O.2)

191P(O. 1) - ).2P(O)
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XJP(2.O) - pP(30O) '

aPl(2.O) X LP(1.O)

).ip(l.l)- IiC.)s

)P(0.2) - 3yPi(1.2)
3

PIPO.2)- X2P(O. 1)

P(011) (, -3 A -k

P(,i -(XOel)2 1iP(10)

P(0,2)~~~. - -..) (0

P(1) ().1/,)3 gip(O.3)

P(2 1)P3Q.1/1 2/2 P(O1)

P(1,2) - 3 .1/11) P(.O2)2 ( )I

P(0,3) - (X'2 3 (00) ' ~*?

%. %



Although it may be a little diffioult to see without solving more _ %

equations the form of the solution is

- 21  [,i , :]  [(( +k2), (/ l)kl( 1/h 1 ) (/P2)k 2 (l/kl)j P(O.0).

Notice that the first term in brackets corresponds to the equatios for

X(S(K)) with two chains. The second term in brackets corresponds to the

equation for fi(xi) (type PS). where oil a *i2 - 1. Obviously G equal

I/P(0.0).

The power of local balance is : answers can be obtained, and it is e.',

only necessary to ues at the general form of the solution. In order e-."

to show the equations for fi(xi) are valid for other types of service

centers, this same problem is worked in Appendix A for FCFS and LCFSPR .

service disciplines. In addition. Appendix A also contains an example - *

of a service center with two exponential stages and LCFSPR service

discipline. As previously stated these are the only known examples

demonstrating that the steady-state equations in this section are

valid.

Unfortunately, only a small subset of service centers have local

balance. For example, if the service discipline of the network in

Figure 6.12 is changed to nonpreemptive priority, local balance is not 6

applicable. This can easily be seen by writing the global balance

equations. Let (xlx2,exk) represent the state of the network, where

xI is the class of the customer currently being served, x2 the class of

the customer to be served next, x3 the class of the customer after x2, lot

eta. The global balance equations for all states with two or fewer
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customers are:

(11+X2)p(0) -= klP(1 ) + P2P(2) 
,-'

,.

( l+ 2+Pl)P(l) - IPP(I.l) + p2P(2h1) + x P(O)

(xl+2+P2)P(2) - paP(l.2) + p2P(2.2) + x2P(O)

( L 1 ). +Pl lP (1 01 1 = P , .11 + p2P (2 .1 .1 1 + ,P~ll %,-,-,.-

1).+2+#11P(1121 = 1Pl.1.2) + j2P(2.1.2) + X2p(l )
% -

(I,+)L2+ 2 )P(2.1) - ).,P(2)

)1+X2 +P2 )P(2.2) - piP(I,2,2) + p2P(2.2,2) + ).2P(2) "..9%
JP. e4

To show that local balance is not applicable all one needs to do is

ezamine the sixth equation. There are three ways to depart state (2.1)

and only one way to enter it. Thus, local balance cannot apply. nor can ...

it be extended to do so. This conter examule Mroves goaolusivelv that "

the same tohnigues that are used to solve networks with type F7S/11.

PS. LCFSP1l and IS service ceaters do nt aply if the service

discioline is nonureemptivo Priority. In every singie case there will .

always be some network state (usually many) in which there are Move

ways to depart a state than enter; it. This is not surprising since it

does not meet the necessary conditions for a product form solution.

It is also proven in Appendix A that local balance is not

applicable if the service discipline is FCFS and customers do not have

the same service rate, p. In this case local balance equations can be

written, but they are inconsistent. V.

-. 9.....,

.%.
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*.5. ILA

The mefe detailed states Is @sect to .~ are so~oosary to der ive *

the steady-este prebabilities. Is this section margisel diattibtious

are obtaine by aggregating states. Lol the segregate system state be

the number of ouotomoro of *ah class i seh service center. More

formally the aggregatO system $tate is defined to be the vector

(y1 .y.... y). where Y - (kil.ki 2 .  .k) nd kic sn the nmber of ..•,...

customers of cloes c in service seater i. Also. let i/pic be the msea

service time of cless a custoer at service ceanter i. Tho steady-state

aggregate probabilities are gives by

- 5 1(y1 ) 52(72) 1W(yW)P(yl Y2 ..... YN) - X(SIM )

where
C

hIt  (i/ki1) (O i )ki° for i FCbS/l/. .
P3, or LCI3P~t. .-.

Ij(Yj) -
•

(1/kiel) (sic/pic l c for I IS.

The expressions for 8i(y i ) are derived Dy sumsaa fi(xi) over all z i

with killk1 2 0 .... kic fixed. The maltinomial theorem and Equation 6.2

are useful (an example will be given later). Note that for type FCFS/l/

service centers the A1 has boon moved inside of the summation and

changed to pie. This was done both to simplify the notation and to

emphasize the similarities between FCFS/1/, PS, and LCPSPR. It is ..

however required that for FCS/l/

il 12 " iC (6.19)
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The fact that the number of customers in a closed chain is ____.

constant suggests eliminating class distinction and distinguishing ,. -

customers according to chains. More precisely let the network state be

(eZ2 .... ZN ) where zi(kliok12...,kij) and kij is the number of chain

j customers at service center i. It follows from the multinomial

theorem that

w1 (z1 ) v2 (z2 ) ... VjZNN )  I

P(zlz2,... zN) = .(s(r)) G

where

kit H (llkll) (eij/lij)kil , for i FCFS/l,
=1 PS, or LCSPR,

wi(zi) -

A1 (1/kijf) (eij/ Lij)kij for "S,

k j - kic - number of chain j customers at service center i.

o in J

ejj u eic - the relative throughput of a chain j customer

a in j through service center i,

1/pij= (l/oi) (sic/pie) f mean service time of s cbsts

c in j customer at service center .

Observe that the equation for wi(1i) is toomorpbtc t'. be .0e

for gi(yi). That is. class parameters ore tempv rep * -

parameters. Also sot* that if there is (,3v me .. * .

% *%* *. -. .-. . ..
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wi(zi) - £i(Yi). The advantage of this aggregate state over the
L

previous one As that the number of feasible network states has been

significantly reduced. It follows that since the purpose of G is to

force the sun of the probabilities over all feasible networks states to

one that it is much easier to determine G using this aggregate state.

If one requires probability distributions by class the value of G can

then be substituted into the previous set of equations.

A further simplication is possible by defining the aggregate state

as the total number of customers ki in the ith service center

(elininating class and chain distinctions) That is, let the state be

(kl.k2 ... kN) where ki equal the number of customers at service center -

i. If follows that the steady-state probabilities are given by :

P=k.sk2 r...,kN) - (S()

where

, ,.[ (Cji.j/J)] if i FCFS/1/, PS, or LCFSPR

0

h (k ) - ..I9
ki

(1/kil) [ i eic/tac)] if i is ,

0 (6.21)

where the sum is over all customer classes which may enter service

center i.

Although this simplification is valid for both open and closed
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networks, algorithms to calculate the normalizing constant do not u s e

it (closed networks). They rely on the fact that number of customers In

each chain is constant. On the other hand, if the network is open and

the mean arrival rate Is constant, then a closed form express ion for

the normalizing constant can be obtained with the aid of these

equations. This will be done in the next section. In contrast to the

earlier equations this set of marginal steady-state equations appear

in several places in the literature [KL11761 CIRUISO] [SAUE$l]

[LAVE83J.

As promised earlier the material in the section will be

illustrated by an example. Assume that the service center in Figure-

6.14 is type PS.

821 : a210 a*2 211 p2 2  212 II b21  b b b
2220 21 1 1

8222

e220 a 221

b220  at 221

;A 221 A222

I [b2 I.

Figure 6.14 PS Type Service Center with Two Customer Classes.
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For this service center,

16211 
6212

_21_a21 1 1821 a210 a211
-"s P L 211 1 1 '211 , 212!

1222 2222 "

Su min2 over all 0211 , 212 0 213 - 221 - and 222 such that

a2l1+a212+0213=k21 and 0221+2221k22 results in: %
16222192 y2 -2 8221 1 a

aS12l+a213=k 1 92P11 J 21l1

S2i o 2 1v r a l l 2 1 " 2 1 21 "2 1 a n 21 2 s2 1 u ck t

1 21 a21 22 reut in:

2 k2  , 220 2 122 a2 2 0 a211 ]22

22k212 221 1211 P2211;!22

k_____21_ a21 [021 210 a2 1 1  21 21 a12
k212131 @213+P21

k ~~[ *2 2002a2 22 8220 21

k221 I P221 P222
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The last expression is obtained by multiplying and dividing the

first summation by k21 and the second by k2 2- and then recognizing the

sumations as special cases of the multinomial theorem. From equation

6.2 the mean service times of a class 1 and class 2 customer are

respectively :

1 *210 a210 a211 a210 a211 *212

P'21 £211 £212 £213

1 a220 a220 a221

P22 P221 P222

Finally, substituting these expression into the last equation for-

S2(y2) yields .
k2l1 h22 2

52(y2) .k2!  _1._ °  1 [ °21]

L"2l£ 21JI k2 21LII22J

Now assuming that class 1 and 2 both belong to chain j, and WIP

sunning over all k12 and k2 2 such that k1 2+k2 2=k2=kj yields v2 (z2 ).

More precisely,

jk2 1  

2

021 1 e2 4e-
wN2 (z 2 ) k- ~k21 k22-k2  2111 £21 ';1 P2]

021t J12 2. 2t

£21 £22

where again the last expression is obtained from the multinomial

theorem. Multiplying and dividing this expression by e2 1+e2 2 gives
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S21 1 22 1 k2

1[ 22)21
"21'2 2L 21+0 +22 "

Since the o's are relative throughputs the term inside the brackets is

the average service time and 621+022 the relative throughput of a chain

J customer. That is,

w2(z2) [K
LP2jJ

where kj = k2 , 2j e21+e22, and

1 e21 1 + 22 1
- - -- 04%

P2j e2 1+e22  P2 1  e21+e22 1122

Now since there were only two classes at service center 2 and both

of these belonged to chain J, it should be obvious that h2 (k2 ) =

w2 (k2). In fact the expression for h2 (k2) was derived earlier as an

intermediate step and is:

r 21 +622 ]k2ZJ
= -+- •t. ,

P2 1  P22

6.5.4 Open Networks with a Constant Mean Arrival Rate

For an open network with a constant mean arrival rate, it is

possible to obtain closed form solutions for the normalizing constant

and steady-state probabilities. If mean arrival rate is constant, then

the marginal steady-state probabilities are given by

6. r If
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P(kL.k2-....k ) K-1 h1(k1 ) h2(k2) ... hN$kN) (6.22)

where K - h I + k2 + see + kN . multiplying the numerator and

denominator by X and letting G absorb the X in the denominator results

in: 
NkP1  k2 """kN)

'l hl.(k)) h. k2((kkl))kN hN
P(klk X h2 2)))N)). (6.23)

The normalizing constant is determined by summing this expression over
OW

all feasible states. That is,

G 0'' [(k hl(kl)) h2 (k2)) ... ( LkN hN(kN))]

01- 02  ktrO

rki h~) y k2 h )1kN (6.24)
X lhl(kl) Xk2(k2)] ... r" hN(kN)4

Hence, the expression for G factors into terms where each term involves

only parameters for a single service center. That is,

N
Ga Gil

n-1l
where

Gi- Xi hi(ki) . (6.25)

ko 
'

It follows from the definitions of Gi and Pi(O) that:

1*
Pi(0) = -
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It also follows from the geometric series and the series expansion of

dZ(OzpZ), that L

1 - I k(eji/Pic) for i FCFS/Il/ PS or LCFSPR

c

Pi(°) = x [

[_ - (eic/pic)] for I IS . (6.26)

Let . .. .

(eio/Pi) if I FCFS, PS or LCFSPR *

Pl =
P ,(eic/pio) if i is .

6.27)o

Note that pi is the utilization of type FC2SI1/I PS, and LCFSPR service

centers since pi - 1 - Pi(O) for all single server, service centers.

However, the utilization of type IS service centers is by definition

zero. Returning to the problem at hand, it follows that the number of

customers in each service center is an independent random variable.

More precisely,

P(kl.k2 ....,kN) = PI(kl) P2 (k2 ) .. PN(kN)

where

Pi (1-pi) if I FCSI/, PS. or LCFSPR

P((k1 ) - (i/ki) - p i  if I IS. (6.28) . -

..- dlm

The results are amazingl For FCFSI1/. PS. and LCFSPR service

centers the marginal distribution is the same as the distribution of
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customers in an X/M/! system. If the service center has an infinite

number of servers, then the marginal distribution is the same as the

distribution of an M/N/o (with an appropriately defined pi). Moreover,

the network steady-state probabilities factor into products with one

term for each service center, and each term is the solution for that

service center 'in isolation' with a Poisson input and with an

exponential service time and appropriately defined pi.

It follows that since the distribution of customers are the same

that the mean values are the same. That is,

Pi if i FCiS/1/, PS, or LCPSPR -

Pi if u S. (6.29) A

Since the network is open, the mean rate that customers enter the

network equals the mean rate that customers leave the network. Thus,

the throughput equals the mean rate that customers enter the network.

The same is true at the service center level. Since sic equals the mean

number of visits a customer makes to service center i, class c, it

follows that the throughput of service center i is

Ti - X I ic .(6.30)

0

Given the mean number of customers and the throughput, the mean

response time can be calculated from Little's law. Usually it is the

performance measure of the service centers, not the overall network,
-. .

that is of interest.

If there is more than one service center, the distribution of the

% %~
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response time cannot be determined. This is beoause the response times

at the service centers are not independent [BURK641. Notice that if a

network consists of a single service oenter with all customer classes

having the sane exponential service time, then the distribution of

customers, throughput, and mean response time are the same for service

center types FCFS/l/. PS. and LCFSPL As pointed out by [leinrock,

although the mean response times are the same, there is a large

difference in the variances. One may, therefore, conclude that the

average response time by itself is sot a very good indicator of system"

performance EKLE176J.
, !

6.5.6 Load Devoednst Service htes and Multiple Servers

The service rate at a service center is said to be load dependent

if the rate that customers are served depends upon the number of

customers at the service center. For example, if a service center

contains identical and multiple servers then the service rate is a

function of both the number of customers and the number of servers. In

the previous chapters this has been expressed as:

ki Pi for ki mi a
pi(ki) - ,

mi i for ki2 mi .;

where -'.
ki = the number of customers at service center i

mi - the number of identical servers

Pi the service rate when ki - 1 . (6.31)

dL *
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The class of networks discussed in this chapter can be extended

not only to include this oas, but more general cases as well. If

Zi(ki) is the relative service rate (relative to pi which is the

service rate when kimi) at service center i when there are ki customers

at service center i then

ki
fi(xi) :- fi(xi) H 1/Zi(a) (6.32) *. "

a1 

ki

ai

wi( i) " wi( i) P l/zi(a) 
(6.34)

a-i

hi(ki) • hi(ki) H i/zi(a) (6.35)

where : is an assignment operator and is read as 'becomes'. The proof Id'

of these equations is identical to the one in the previous chapter

section 5.4.5 where the subset of service centers is simply service q

center i. The only restrictions on Zi(ki) are that it be a positive 
-.%1

function of ki and Zi)=l. However, it is usually assumed that there

exist some a such that for all ki2m Zi(ki)-Zi(m). For example, for the

identical and multiple service center case

ki for kiS miZi(k i )  - i 
-l 

m

' i for kil mi , (6.36)

and the service rate is pi Zi(ki). Such service centers are often
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referred to as 'limited load dependent' centers because the service

rate dopen4_s upon ki only up to m. It will be assumed throughout this

chapter and the next that all load dependent service center are of

this type.

Nov lot qi X(ei 0/pio) (6.37)

C

and pi -i/Zi(). Also let Gi equal the component of the normalizing

constant that is duo to service center i. That is Gi -/Pi(O). It

follows that

k* ki a

Gi k hi(ki) - 1 i II 1/Zi(a)
k i = 0 k 0= a ,--1."- " -;

kik ki-

U-1 ki k i
- 32l k H l1Zi(a) + /Zi(a)

ki=0 a1 lI-1 8=

m-l k kiCDk
.." -H

= O ai l/Zi(a) + Cin H l/Zi(&) (Ci/Zi(m)]i .

ki= 0  a1 a- 0 . .. ,..

-. *eJ

in  .-.".
-+ ________ . (6.38)

k 2i=0 kt

H Zi(a) (l-Pi) (i-O'- Zi(a)
a-i a-i .

Similarly, the mean customer population at service center i is

ak~i " , hi X~ i~i - *- hi1ai..-,
hi hi .. i i ... 1/Zi(a)

k 1 k1 =1ki~l ".i-i
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I U-1 k i Ik ki
-

i Cik l l/Zi(a) + k i 4 1/Zk (i )
a-i R1G a-1iZ

ki M ki=m J/

Ti k i + k %-1
= - I lIZi(a) + -/Zi(a) (ki+m) Pi

ki .%.

a - k =

kim Pl 1 kA .i

-- + ]+-- - - . (6.39)
2 ki

Zi(a) H Zi(a)
a-i a-i

For the the special case of

ki  for kil mi ".

i) mi  for ki mI  (6.40)

01 and Lr reduce td

mi-i :

G M (6.41)
I k - kil a! (1-pi)

k* *F

pi (.1 P1 )ml"'''

L -+ P P1 + " (6.42)Gi at (i-pi) 2

It should not be surprising that Gi is identical to i/P0 for the M/I/m

system and L t equals L of the X/M/M system. Also note that pi is in

agreement with the utilization of the N/M/m system.

There are, however, oases when one might want to assign Zi(k i ) -'*
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differently. In these cases the move complicated expressions must be

used. In clgsing, the results of this section are valid for FCFS, PS,

and LCFSPR service disciplines. However, unless it is explicitly stated

that the service rate is load dependent, it will be assumed to be load

independent. Furthermore, the notation FCFS will be assumed to imply

FCFS/1/ (load independent) unless stated otherwise.

6.5.7 An Examule of gueuoing Networks with Multilule Classes

The following is the only known example of an open queueing

network with more than one class of customers and more than one service

center. The example Is from 'Computer Performance Modeling Handbook'

[LAVE83]. The example was not intended to illustrate the analysis of

queueing networks, but to show that the number of classes required to
.% -

describe the routing can be uignifioantly reduced by combining sources.

Unfortunately, the example as it appears in the reference does not

contain a figure showing the routing, and therefore is very difficult

to follow. In addition, all equations and results are stated in

sentence form. The example as it appears here has been greatly

expanded. ..,

Figure 6.15 depicts the model of a small communications network

organized as a ring. Messages (customers) originate at the sources and

terminate at the sinks. Every message must pass through one or more

communication links (service centers). For example, a message from

source 1 goes through link 1 to got to destination 2, through links 1 .% .%.

and 2 to get to destination 3, and through links 1,2, and 3 to get to
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destination 4. A message from source 2 goes through link 2 to get to

destination_3, through links 2 and 3 to Set destination 4, and through

links 2,3, and 4 to get to destination 1. Messages from sources 3 and 4

behave similarly.

SOURCE SINK

LINK

SINK S SOURCE

2 LINK

SOURCE SINK : .

( "3
LINKu

SINK SOURCE

Figure 6.15 Model of a Communications System.

The routing of messages in the network cannot be described by a

single set of routing probabilities. This is because the routing

probabilities depend on where the message originated. For example a

message from source 1 that passes through link 3 must terminate at

destination 4, whereas message& from the other sources may be routed

through link 4. In order to describe the routing, it is necessary to
•% % "s

partition the messages into classes. If it is assumed that there are

four sources, then six classes per service center are required to " % N
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4u
describe the routing (see Figure 6.16). For example, source-destination i.

-pairs of messages that pass through link two are :

(2.3)o(2.4).(2.l)o(l3),(1,4), and (4,3).

(1-2) %k

l r~ mmm I  b-"....4.

44

411

(I .22

(3-2)

- - - - - ~~~~~1 ~.(3-11

33)

Figure 6.18 Classes Required for Routing with Multiple Sources.

On the other hand the number of classes at each service center can -'1

be reduced by combining the four sources into a single (aggregate)

source. This reduces the number of classes at each service center

required to describe the routing to three, one for each possible

destination (see Figure 6.17). For ezample at service center 2 classes

are required for destinations 3,4 and 1. Thus, a minimum of 12 classes

195,
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are required in order to describe the routing. In order to obtain a

solution, il is necessary that all messages have the same service time

distribution, and that it be an exponential.

2
1/3 1/3a

Fi igre 6.17e Clases~ ruried witern Agregate oue. lssa

1/44 LA LO.

I.-It is assumed that messages arrive from the four sources at a rate

of 2.5 messages per second and all destinations are equally likely. It

is also assumed that the mean message length is 360 bits and the

transmission rate is 2400 baud. Thus, the arrival rate M. of messages

from the composite source is 10 messages per second, 1/4 of these

messages are routed to each service center, or 1/12 to each class at

S%t
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each service center. The service rate (iii) is 2400/360 or 6.67

messages per- second (the message length includes overhead). The

relative throughput equations are

Oi- 1/12 + e42

01 1/12 + 4 3

*12 w 1/12

-2 1/12 + 1

02 1/12 + *13 %

02- 1/12 ~

-3 1/12 + 022

03- 1/12 + 2

'032 w 1/12

-4 1/12 + 032

*42 ' 1/12 + 033

04 1/12.

Solving these equations results in:

ell w 2 1 -m 31 w 4 1/4

-1 w 22 m 032 w e42 - 1/6

e13 m e23 - 033 m 043 "1/12

The utilization at each service center is

Pi - X.(sic/IPi) -(X/Pi) (6il+ei2+gi3)
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( 110/6.67)(1/4+1/6+1/12) -0.75

The distributton of messags at each service center is:

Pi(ki) - (0 .7 5)ki (1-0.75) .

The mean number of messages at each service center is

Pi

Li. 0.75/(1-0.75) - 3 messages.Ll 1 -Pi

The throughput at each service center is

Ti - X I sic - 10 (1/4+1/6+1/12) - S messages per second.

c 4..

The mean response time at each service center is

L1

ii -- - 3/5 - 0.6 seconds per message$,
T

Thus, the mean response tines of messages that pass through 1,2 and 3 ..

service centers are 0.6s, 1.2s and 1.8s respectfully. The mean response

time of an average message is the weighted sum of the means. Since all

means are equally likely, the mean response time of an average message

is: (0.6)(1/3)+(1.2)(1/3)+(1.8)(1/3) - 1.2 seconds.

One of the problems facing the deSnor of a communication network " " "
SI

is buffer size. If it is too small then messages will be lost. In order

to properly determine the buffer size, one needs to know the

distribution of messages at each service center. That is, more

information is required than just the mean. For example, the

probability that the service centers in Figure 6.8 contains more than 6

customers is:
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P(ki > 6) - 1 - [P(0)+P(1)+12)+(3)+(4)+P(S)+P(6) - 0.1334.

That is, 1334 peroost of the time a servie center contains more that

6 customers. Reno*. oven though the mean is only 3 message* a buffer

size of 6 is inadeqatel

%%
'e
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CLAPT1U 7

CLOSED ANDxx NENvORS

7.1 Introuctin

The equations derived in the last chapter give only the form of

the solution for closed and mixed networks. More specifically, a closed

form expression for the normalizing constant, 0, was not, and in

general cannot be obtained. The reason for this is that the number of

customers in a closed chain remains constant, and therefore the

distribution of customers at the individual service centers are not

independent. By definition, the normalizing constant, G, is the
%

summation of all unnormalized probability distributions over all

feasible networks states. Clearly, for a closed network the number of

feasible networks states equals the number of possible ways that IV

customers can be distributed over the network, such that the number of

customers in each chain remains constant. Unfortunately this number

increases rapidly as the number of service centers and/or the number of

customers increases. The reader is referred to the example in Chapter 5

in which a network consisting of a single chain with eight service

centers and 20 customers yielded 888,030 network states. It should also

be noted that each term in the summation contains virtually every

parameter associated with every service center in the network. Thus,

even for the smallest of networks the expression for G would probably

be too complex to determine how the parameters affect performance. .4

Fortunately, there are other ways of determining G than directly from

I%
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its definition. lowever, any expression derived from those is still so

complex that usually all one can handle is the naumerical result.

At the present there are three algorithms for determining the

performance metrics of closed networks : the Convolution algorithm, the

Mean Value Analysis (EVA) algorithm, and the Local Balance Algorithm

for Normalizing Constants (LBANC). All extend to the full class of

networks known to have a product form solution. However, no one of them

is beat for solving all problems on all machines.

Before discussing the advantages and disadvantages of these

algorithms, it is first best to make some general comments and define

some notations. All of the algorithms have recursive equations. That

is, either the equation for the normalizing constant or some other

parameter is given in terms of the same parameter with one less %

customer in the system. More precisely, one less customer in one of the

chains. For a network with I closed chains let V - (VlV 2 ,...,V 3 ) where

V iis the number of customers in the jth chain. The vector V will be S

referred to as the population vector. Now lot 1 be a vector with a one

in the Jth component and zeros everywhere else. Thus, the vector V-l

represents the network with one less customer in chain J.

The convolution algorithm was developed by Buzen in the early

1970's [BUZE731. Its name comes from fact that the recurrence equation

for G(V) resembles discrete convolution. In the case of a single chain

closed network, G(0) is assigned the value of one. This value is used

to compute G(l), the normalizing constant when there is one customer in

the system. The value of G(1) is then used to compute G(2) and so on.
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The process is repeated until the desired population has been reached.

For a single chain network with N service centers, the algorithm

requires approximately N+V multiplications and N+V additions.

Unfortunately. the algorithm is sensitive to the value that must be

assigned to one of o's, and numerical problems can occur regardless of

what value is assigned (usually overflow). In addition, the complexity

of the algorithm increases significantly for networks with multiple

chains. The details of the algorithm will not be discussed here due to

the lack of room and the fact it is discussed elsewhere. The interested del

reader is referred to 'Computational Algorithms for Closed Queueing

Networks' by Bruell [BRUE8O]. This reference is a condensed version of

his Ph.D dissertation. It contains over 200 pages and starts with the .

equations developed in the previous chapter . Approximately two-thirds

of the book is devoted to this one algorithm.

In the late 1970's Reiser and Lavenborg developed an iterative

algorithm that can determine mean performance values without finding

the normalizing constant [RISSO]. Hence, the name Mean Value Analysis.

For single chain networks the mean values are determined for the

network with one customer. These values ate used to determine the mean

values of the network with two customers, and so on. The algorithm

requires approximately the same number of computations and storage as

the convolution algorithm, however it is less sensitive to numerical

problems. It is the algorithm of choice except for networks that

contain several service centers with 'limited load dependent' service

rates (See Chapter 6. Section 6.5.6) BRUSSOJ (AVE831 [1ATE841. In %
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A
addition it is the only algorithm whose equations have intuitive

meanings. This not only makes it easier to explain, but more

importantly, easier to remember. For these reasons and because there

exist no examples in the literature, it will be discussed here.

However, it will not be discussed with the same mathematical rigor as

the previous chapters. There are several reasons for this. The first is

that many of the proofs employ results that are from the convolution

algorithm, which would have to be explained and derived also. Another

reason for not deriving all of the equations is that this would

conflict with presenting the material in a tutorial fashion, which is a

primary objective. That is, many of the simplest to use equations are

special cases of more general equations, and they cannot be derived

without first deriving the more general ones. e_1

LBANC was inspired by NVA and closely parallels it [CHANSO]. In

addition to determining the mean performance values, the normalizing

constant is also determined as implied in its name. It is the algorithm

of choice when probability distributions are required. However, it has

the same numerical stability problems as the convolution algorithm, .

and the same disadvantages as MVA when dealing with limited load

dependent service rates. Another disadvantage is that its equations do

not have intuitive meaning and are difficult to remember. With the
,%.- •.o

exception of a few comments, LBANC will not be discussed further.

7.2 Closed Networks

For a closed network, the complexity of determining the

performance metrics is directly proportional to the number of feasible
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network states, and as stated in the last chapter the number of W

feasible neiwork states can significantly be reduced by eliminating

classes and distinguishing between customers according to chains.

Although this is the starting point of all algorithms for closed

networks, the authors of these algorithms state this in very obscure

ways. For example Reiser, the author of the IVA algorithm, simply

states that a network that allows customers to switch classes can be e

mapped into a model without class changes [REISSO]. Although this 44

statement might be implied in the reference he gives, there is no such

statement in the paper. Bruell starts transforming the classes into

what he called equivalent classes without giving a reference or V

justification for doing so [BRUES0]. In addition, several of Bruell's %

statements and equations concerning obtaining class metrics from

equivalent class metrics are wrong. Chandy and Sauer, the authors of

LBANC, make the statement that it is more convenient to first obtain

metrics by service centers and then obtain class metrics from these

(their statement as given is valid only for single chain networks) r

[CHAN80]. Again, they give no reference or justification. In addition, 4
many of the authors that have made extensions or modifications to the ,1 ,.'

original algorithms make statements such as each chain j customer

belongs to the same customer class, or that the term class and chain

are used synonymously. They make no mention of the fact that the

original algorithms or their modified ones can handle networks in which

customers are allowed to change classes. It is believed that at least

part of the confusion arises from the fact that there is no reference
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explicitly explaining this. More precisely, it is believed that the

aggregate stato in which customers are distinguished according to

chains, along with its Justification given in the previous chapter, is

not new but does not appear (at least explicitly) elsewhere in the

literature.

Considering the problem at hand, once the chain performance

metrics have been determined, class performance metrics can be easily

calculated. For example, once the normalizing constant has boon

determined its value can simply be substituted into the equation for \

probability distribution by class. Before deriving the equations for

converting chain performance metrics to chain metrics, a notational - --. .?.:

change will be introduced. The mean service rates of a class c or chain

J customer, denoted Fic and pie respectively, more often than not have

appeared in their reciprocal form. Therefore, let

l1piO Sic (7.1)

"1pij inij - (7.2)

Obviously, sic and aij are the mean service times of a class c and

chain J customer at service center i. The equations for determining

mean class metrics from mean chain metrics and their derivations

follow:

Throughput by class can be determined from the known relative

throughputs Sic and oij. More precisely,

TicCVM - (eo/oij Tij(V) (7.3)

Utilization by class can be determined from the equation "

Pic(V) [(Gicsic)/(eijsij)] Pij(V) , (7.4)
* 0l
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which follows from the reasoning that since the e's are relative

throughputs, e.105 0 and eijsij are relative utilizations. Similarly, %

the mean number of class € customers at service center i is given by :

Li0 (V) - [(oicSc)/(ijstj)] LLjlV) , (7.5) !

which follows from the fact that the term in brackets (the ratio of

relative utilizations) is the conditional probability that an arbitrary

customer, waiting for service or already receiving service, is in class ,'$",

c, given that it is in chain J. Class response time can be calculated

from Little's law. More precisely,
1io(V) = Li0 (V)/Tic(Y) M (7.6)

7.2.1 The Arrival Theorem

Mean performance parameters for a queueing network with multiple

closed chains and a product form solution can be determined from the

three principles

(1) A chain j customer arriving at service center i 'sees' the system 4-

with himself removed and in equilibrium,

(2) Little's Law applies to chains,

(3) Little's Law applies to service centers.

The first of the these principles is known as the arrival theorem. It's

proof, [LAVE79], depends on results that can only be derived from the '

convolution algorithm and will not be repeated here. It is important to

emphasize that the arrival theorem only holds for networks that have a

product-form solution. Most of this chapter is concerned with the

application of these three principles.

•-.. 4-,206 4
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7.2.2 The Throughout Theorem

As its name implies, NVA deals with determining the mean values of

performance metrics such as throughput, response time, and customer

distribution. However, it is possible to determine the normalizing

constant from these values via the throughput theorem. It states that

the average throughput of a chain j customer through service center i

is

G(V-l )
Tij(V) = (V) ei (7.7)

where G(V-1j) is the normalizing constant of the network with one less

customer in chain J. The throughput theorem is one of the primary - JI,

results of the convolution algorithm and will not be proven here.

Solving this equation for G(V) results in

G(V-lj)
G(V) - V J (7.8) 'N

Tij(V

Now, since oij is known and NVA requires the calculation of Tij(V) for

all V up to the desired population. G(V) can easily be determined. The

procedure will be illustrated later by examples. Unfortunately, this

step does add to the storage requirement of the algorithm. This may or

may not be an issue depending on the size and population of the network

and the amount of usable memory.

At this point some additional comments about the normalizing

constant are appropriate. As of the present there is no algorithm or . N

scaling technique that will always prevent overflow from occurring when
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trying to calculate the normalizing constant. One of the primary

advantages o- VA over convolution and LBANC is that it doesn't

require the normalizing constant to obtain performance metrics.

7.2.3 Sinle Chaim - Load Indeoeadent - Closed Notwork8

In order to illustrate the NVA algorithm consider a single chain ,

closed network with N. load independent, single server, FCFS. service

centers. Clearly, the mean tine a customer stays at a service center is

his mean service time plus the mean time it takes for the service

center to dispose of the backlog of customer ahead of it. Since the

mean service time of all customers at service center I is the same, the -

mean response time of a customer at service center i is:

Ri(V) - ai (1 + Li(V-l)]. (7.9)

where the term Li(V-1) is the averasge backlog of customers and follows

directly from the arrival theorem.

Throughput can now be calculated from response times by the

equation:
S. "

TI(V) = V / (en/oi) 3n(V) . (7.10)

The equation for throughput follows from the fact that (on/c ) is the

number of times a customer visits service center n before returning to

service center i, and therefore the summation is the time it takes a

customer to pass through service center i and return.

The mean number of customers at each service center can now be
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calculated from Little's law. Move precisely

Li(V) - Ti(V) RI(V) • (7.11)

Thus, RI 0 ) Ti(0). and Li(0) can be calculated and these values used

to determine Ri(1), Ti(i), Li(1), the results used to determine the

performance metrics for V-2 and so on. At any point in the

calculations, the utilization of the service center can be calculated

from

Pi(V) - si TI(V). (7.12)

Although it was assumed that all service centers were load

independent FCFS, the equations are valid also for load independent PS

and LCFSPR service centers. This follows from the fact that the

aggregate state probabilities are the same, and consequently, so are

the mean performance metrics. The infinite server case is trivial. That

is, since the number of servers is always greater than or equal to the

number of customers, the mean response time is just the mean service

time. A more program-like definition of the algorithm is given in Table

7.1. Notice that the throughputs for all but one of service centers are 1

obtained from their relative throughputs.

As an example, the closed network of Figure 5.7 will be reworked C-

using EVA. For convenience, service rates and relative throughputs are

repeated here:

aI - lons e1 - 100

s 2 - 2Sms 2 = 80

U 5n3 =loons .
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Begin -

For i:-i to N do (initialization)
LI(M) :- 0

For v-0 to V do (body)
begin

(response time)
For i:-1 to N do (response time)

RIM - , [1 + Li(V-1)] if i FCFS, PS. LCFSPR

$I s i  if I is

(throughput)

TI() - el, si ji(v)
J-1

For i:-2 to N do

TI(v) - (site1 ) Tl(v)

(queue length)
For i:-l to N do

LI(V) - Ti(V) Ri(V)

end (NVA body)

(ut iI izat ion)
For i:=1 to N do

*( Ti(V) if i FCFS, PS, or LCFSPR 'p1 (V) -n::.:

0 ~ If Iis

End.

,N.
Table 7.1 UVA Algorithm For Single Chain, Load Independent, Networks.
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Calculations for V = 1

R, (1) - (lOUO-3 1 1)

R2(1) - (25410-3) (1)

1(1) - (100*10- 1) (1)

T11) - (1) (100) 25 ,(100)(10*10-3) + (80)(25*10- 3) + (10)(100,10-3 2

T2 (1) - (80/100) T1 (1) - 20

T3(1) - (10/100) Tl1(1) - 2.5

• .4
L,(1) - (25) (10010 - ) - 0.25

f. -'.J

L2(1) - (20) (25*10- 3) - 0.50

L3(1 - (2.5) (100103 0.25 . -

TlZ2 , •(21 (100 "..

Calculations for v -2

R122 - (10/100) (1.25) - 12.5010

L2(2) - (2510) (1.5) - 37.5*103

L3(2) - (100103) (1.25) - 125"10""

(2) (100)
T1 (2) - ________________-36.36

(100)(12.5*10-3) + (80)(37. 5010-3) + (10)(125010-3)

T2(2) - (80/100) TIM2 - 29.09

T3(2) - (10/100) T1(2) - 3.636 S

L1 (2) - (36.36) (12.5*10- 0.445

L2 (2) - (29.09) (37.5010-3) _ 1.091,A..

L()- (366 (15*10-3 - 0.44
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Calculations for v - 3

l31 - (1001073) (1.455) - 14.55010-3

R2(3) - (250--) (2.091) - 52.28010- 3  PIe

3(3) - (10010- 3) (1.445) - 14S.5010- 3

Tl12 )  (3) (100)
(100)(14.55010-3 ) + (80)(52.28010- 3) + (10)(145.5010- 3 )

- 42.3

T2(2) - (80/100) Tl1(3) - 33.84

T3(2) - (10/100) Tl1(3) - 4.23

Ll(3) - (42.3) (14.55010 - ) - 0.6155 -,

.2(3) - (33.84) (52.28*10 -3 - 1.769

L3 (3) - (4.23) (145.5010- 3) - 0.6155

P1(3) - (10o10-3) (42.3) - 0.423

3- 12*10
-3  (33.84) - 0.846

p3(3) - (100*10- 3 ) (4.23) - 0.423 .

If desired the normalizing constants can now be calculated from

the throughputs. More precisely,

0(v-l) 0(1V-i

G(V) - Tl(V)

G(O) - 1

(1)(100) -4,

25
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G(2) - (4)(100)11
36.36

(11)(100)
GM - 42. 263

7.2.4 Sinls Chain - Load Denendent - Closed Networks

Let si(ki) equal l/pt(ki). For service centers with limited load -...

dependent service rates the average response is obtained from:

,4 %.

Ri(V) = ki si(ki) Pi(ki-lIV-l) ( (7.13)
ki=1

where Pi(ki-1IV-1) is the marginal probability of finding ki-1

customers at service center i, given that the network contains V-1

customers. It can be determined from the recurrence equatiqn:

1 for ki-O and V-O

Pi(kiV) = si(ki) Ti(V) Pi(ki-IV-1) for ki)O

1- Pi(kilV) for ki=O and V)O
ki (7.14) .5

Note that the equation for the response time holds even if the service

rate is fixed or if it is strictly load dependent (infinite servers).

Although it will not be proven here, the equation for the marginal

probability also holds. The reason for this is that both equations are -
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intermediate steps in the proof of the arrival theorem. More precisely,

the equations for multiple chain load dependent service centers (the

most complez asoe) are derived first and all the others from these.

The utilization then of a limited load dependent service center is

piCV) " min(kimi) Pi(kilV) / mi " (7.15)
ki-O

This follows from the fact that when service center i contains ki

customers, [mlin(kimi)]/mi is the capacity of the service center that

is being used.
q

The procedure will be illustrated by the network in Figure 7.1. A -

description of the service centers is given in Table 7.2. It follows

from the routing probabilities in Figure 7.1 that if e2 is assigned the

value of one, then e1 - e3 - 0.5. Thus,

T2(V) - (e2 /e1 ) Tl(V) - (2) TI(V) for all V

T3 (V) - (e 3 1e 1 ) Tl(V) - (1) TI(V) for all V.

It follows from the service rates of the individual servers that: .*

2

-2

4 for ki l

ski) - 2 for ki>1

The following are the calculations for v-l, v-2, and v-3:
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#1
#2

Figure 7.1 Exatmple of al Load Dependent Network. _..

0.5%

Service Number of Service Server

Center Servers Discipline Rtae ,

1 1 PS 0.-"

3 2 F(FS 0.2 5 ,5."-'

Table 7.2 Description of Service Centers in Fiure 7.1.

2 s I .

II'

.N

Ta l 7. Description of vce C215.



Calculations for T-1

-ll (2)-(l) - 2

R2(1) 1

%3(l) -(4) P3(010) - (4) (1) -4

Tl~~l) (0.5) (1)0.2
T11) (0.3)(2) + (1)(1) + (0.5)(4)

T2(1) - (2) (0.125) -0.25 'r

T3(l) - 0.125

:% %

Ll~l)- (0125)(2) 0.2
L()- (0.250) (2) - 0.25

[.3(1) - (0.125) ()- 0.50 h

P3(1I1) - (4) (0.125) P3 (010) -0.5

P3(01i) - 1 - Pull1) - 0.5 . *5-

Calculations for v-n2:

Rl(2) - (2) (1.25) -2.5

R2(2) -1

R3(2) -(1)(4) P3(011) +(2)(2) P3(111) -4

(0.5) (2)

T2(2) - (2) (0.235) - 0.4710.3

T (2) - (1) (0.235) - 0.235
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L1 2 1 - (0.235) (2.5) - 0.588

L,2(2) - (0.471) (1) - 0.471

L3(2) ( (0.235) (4) , 0.940

P3(112) - (4) (0.235) P3(011) - 0.470

P3 (212) - (2) (0.235) P3 (111) - 0.235

P3(012) - 1 - (0.470 + 0.235) - 0.295

Calculations for v-3

RIM3 - (2) (1.588) - 3.176

R2(3) - 1

R3(3) - (1)(4) P3(012) + (2)(2) P3 (112) • (3)(2) P3 (212)- 4.470 -

(0.5) (3) .311
T1 (3' = (0.5)(3.176) + (1)(1) + (0.5)(4.470)

T2 (3) - (2) (0.311) - 0.622

T3 (3) = (1) (0.311) = 0.311

Ll(3) ( (0.311) (3.176) - 0.988

12(3) - (0.622) (1) - 0.622

L 3(3) - (0.311) (4.470) - 1.390

P3(113) - (4)(0.311)(0.295) - 0.367 '.

P3(213) - (2)(0.311)(0.470) - 0.292

P3 (313) - (2)(0.311)(0.235) - 0.146

P3(013) - 1 - (0.367 + 0.292 + 0.146) - 0.195
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4P

p1(3) - (0.311) (2) - 0.622

P2(3) - 0 -

P3 (
3 ) - [(1)(0.377) + (2)(0.292) + (2)(0.146)1/2 - 0.622 .

As before, the throughput theorem can be used to determine the

normalizing constant:

G(0) 4 1 % M

0.125

G(2) - (4)(0.5) 8.5

GM13.667 % %"

____-_ _ -,8.
0.235

G()- 0.311 ","13.6-67

L

The calculations for load dependent service centers not only

require additional work, but also require additional storage to compute

the marginal probabilities.

7.2.5 Load Independent - Multiule Chain - Closed Networks

The s:n&le chain NVA algorithm described in the previous two

sections generalizes directly into a multiple chain algorithm. For

Networks with load independent or type IS service centers, the

recurrence equations are:

sij El + Li(V-) for i FCFS, PS or LCISPR -

ijSj for i IS (7.16)
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Tij(V) = ejl vj / e l ljj(V) (7.17) _

LIJ(V) - Rij) (7.18)

Li(V) LjV) . (7.19)
.1-1

The relationships expressed by the equations should be obvious

from the earlier discussion with the possible exception of the equation

for response time. That is, one night suspect that since customers in

different chains may have different service rates if the discipline is

PS or LCFSPR, the equations should somehow account for this. However, -

the equation is correct as stated, and the authors of the algorithm

simply state that s5j LI(V-l j) is a congestion factor caused by the ?.

other customers. In the case of FCFS service centers, it is required

that ailm ei2 - 
* el* rn~since EVA is only valid for networks that have

product form solutions. A program-like definition of the algorithm is

given in Table 7.3. Notice that the number of iterations has increased

significantly due to multiple chains. As before, utilization can be

calculated at any point in the procedure by the equations:

Pij(V) - 5i. Tij(V) , (7.20) .

and

Pi(V) Pij(V) . (7.21) ri-
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Begin (initialization
9

for i:-1 to-N do L(O) : 0 .

for vi :-0 to V, do
for v2:=0 to V2 do

for vj:=O to V, do .- -

begin (main body)

V,
(vl,v2,j...,v3 ) , ..

for J:-1 to I do

for i:-1 to N do (response time)

Rijvl = rl I + Li(v-lj)] 
for i Fc FS, PS, LCFSPR

'-'ii for i IS

(throughput)

Tjv) - eli vj i *ij Rij(v)
i-i

for i:-2 to N do

Tij(v) = (oij/elj) Tjj(v)

for i:-1 to N do (chain queue length)

L j(v) - Tij (v) Rlj (v) *, *

end (for J)

for i:-1 to N do (queue length)

Li(v) = Lij(v)
J-i

end end end (for vl,v 2 , ... ,VI)

(calculate utilization)

End.

Table 7.3 UVA Algorithm for Multiple Chain Load Independent Networks. .
v
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In order to illustrate the multiple chain procedure, consider the

network in Figure 7.2 and the description of the service centers given

in Table 7.4. s'sining e 3 *1  * 3 ,2 -1 yields:

6 -1 0.5 e1 .2 m 0.5

-2 0. 5 02 .2 m 0.5

03, 1 M1 03 2 mI1%

Thus,

T32 (V) - (T 1 1(V) T2,2(V) - T(2)

T3.l(V) - (T191 (V) T212(V) - (T15 2(V) l

for all V.

It follow from Table 7.4 that

*2.1 w 4 2.2 2

s31- 1 S3.2 a 2

The following are the calculations up to V-n(2,2):

Calclatonsfor v - (0.1)

Rl'2(0.5) -12

(0.5) (- 0.125
T1'2011)(0.5) (2)+(0.S) (2)+(l) (2)

T2 .2 (011) -(1) T1 .2(011) - 0.125

T3 ,2 (0.1) -(2) T1 ,2(0,1) - 0.250
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CHAIN 1

I

o0.5

0.5 .

0.5

'--I 0.5
II

CHAIN 2

Figure 7.2 Load Independent, Multiple Chain Closed Network.

Service Number of Service Server Server
Center Servers Discipline Rote pil ]Lte P12

1 1 FCFs 0. 0.5 ;'::

2 1 PS 0.23 0.'

3 is 1 0.3 ....

Table 7.4 Description of Sorvice Centers in Figure 7.2. -
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l1 2(0,11 - (0.125) (2) - 0.25 - [i(0.1)

2,2(0-1) --(0.125) (2) - 0.25 - L3 (0,1)

L3 ,2(01) - (0.250) (2) - 0.50 - L3(0.1) .

Calculatloas for v - (0,2)

R1,20 - (2) (1.25) - 2.5

R2,2(0.2) - (2) (1.25) - 2.5

R3,2).21 - 2

(0.5) (2) = 0.222

T1,21' (0.5) (2.5)+(0.5)(2.S)+(1)(2)

T2 ,2(0,2) - (1) T1,2(0,1) - 0.222

T3 ,2(0,2) - (2) T1, 2(0,1) - 0.444 p,.0

L1 ,2 (0,2) - (0.222) (2.5) - 0.556 - L1 (0,2) 
. ,

L2 ,2 (0,2) - (0.222) (2.5) - 0.556 - L2(0,2)

L3 ,2(0,2) - (0.444) (2) - 0.888 - L3 (0,2) .

Calculatlons for v - (1.0)

Ri,111,01 (2) (1) - 2

,1I(1,0) - (4) (1) = 4

13,1(1,0) - 1 6

(0.5) (2)
Tl,(,0) - -0.125
T111,0 ,  =(0.5)(2)+(0.5)(4)+(1)(1)

T2 ,1 (1,0) - 0.125

T3 1 (1,0) -0.250

1 -
2 23 ,.i ,
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L1 ,1 (1.0) - _0.125) (2) - 0.25 - L1 (1,0)

L2,1(1.0) - (0.125) (4) - 0.50 - L2 (1,0)

L3 ,1 (110) - (0.25) (1) - 0.25 - L3(1.0)

Caloulations for v - (1.1)

fL,1(1,1) . (2) (1.25) - 2.5

12,1(1,1) - (4) (1.25) - 5

R3,1(111 1
IL-

(0.5) (1) = 0.105T1,(1,) "(0.5) (2.$)+(0.$) (5)+(1) (1)

T2 ,1 (1,1) , 0.105

T2,1(1,1) - 0.210

3,1(ll .1

L1(ll). (0.105) (2.5) - (0.263)

L2,1(1,1) - (0.105) (5) - (0.526)

L3 ,1 (1,1) - (0.210) (1) - (0.210)

R1,2(1.1) - (2) (1.25) = 2.5

12.2(1,1) - (2) (1.5) - 3

R3,1(1,1) - 2

(0.5) (1) ' .0 ,'"
T(11 0.1051,2(1  (0.5)(2.)+(0.5) (3)+(1) (2) ,~~ %,,

T2 , 2 (1,1) - 0.105

T3 2 (11) = 0.211
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L_,2 (1,1) - (0.105) (2.5) - 0.263

L2 , 2 (1,1) - (.105) (3) - 0.315

L3 ,2(1,1) - (0.211) (2) - 0.422

Ll1(1,1) - (0.263) + (0.263) - 0.526

L2 (1,1) - (0.526) + (0.315) - 0.841 .. ,.

L3 (11,) - (0.210) + (0.422) - 0.632

Calculations for v - (1,2) :

RiL,(1,2) - (2) (1.556) - 3.112

12,1(1,2) - (4) (1.556) - 6.224 .

R3,1(1,2) - 1

(0.3) (1)
T1 ,1(1"2) =(0.5)(3.112)+(0.$)(6.224)+(1)(1)

T2 ,1 (1,2) - 0.088

T3 ,1 (1,2) - 0.176

L1 ,1 (1,2) - (0.088) (3.112) - 0.274

L2,111,2) - (0.088) (6.224) - 0.548

L3 ,1 (1,2) - (0.176) (1) - 0.176

R1.2(1,2) - (2) (1.526) - 3.052 -.

2.2(1,2) - (2) (1.841) - 3.682

R3,2(1,2) -2
,Jf %- ,
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T(12) - (0.5) (2) 0.1861.2, -(O.S)(3.052) (O.S)(3.682)+(1)(2)'

T2,2(1,2) - 0.186

T3 ,2 (1,2) - 0.373

L1,2(1,2) - (0.186) (3.052) - 0.568

'1,2(1,2) - (0.186) (3.682) - 0.685

L3,2 (1,2) - (0.373) (2) - 0.745 .

L1 (1.2) - (0.274) + (0.568) - 0.842

L2 (1,2) - (0.548) + (0.685) - 1.233

L3 (1,2) - (0.176) + (0.745) - 0.921 -

Calculations for v - (2.0) : -

R1,1(2.0) - (2) (1.25) l 2.5

R2.1 (2.0) - (4) (1.5) - 6

R3 ,1(2.0) - 1

,'% .%,

(0.5S) (2). ,.-

T1,1(2'0) "(0.5)(2.5)+(0.S)(6)+1)(1) 0 0

"2 1 (2,0) - 0.190

T3o1 (2,0) - 0.381 """

L1 ,1 (2,0) - (0.190) (2.5) - 0.475 - L1(2,0)

L2, 1(2,o) - (0.190) (6) - 1.143 - 2(2.0)

L3 ,1 (2,0) - (0.381) (1) - 0.381 - L3 (2,0)
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Caloulations for v - (2,1)

R11(2.1) =-(2) (1.526) - 3.052

B2o1(2,1) - (4) (1.941) - 7.364

32,1(21) - 1

(0.5) (2) - 0.161 r
1 1 (21) = (0.5)(3.052)+(0.5)(7.364)+(1)(1)

T2 .1(2.1) - 0.161

T3,1(2,1) - 0.322

11 1(2,1) - (0.161) (3.032) - 0.492 I

L2,10.1) - (0.161) (7.364) - 1.186

L3 .1 (2,1) - (0.322) (1) - 0.322

I

R1,2(2,1) - (2) (1.475) - 2.950 -

R2.2(2,1) - (2) (2.143) - 4.286

R3,2(2,1) - 2 - .'

(0.5) (1) - 0.089
T1,2(2,1) = (0.5)(2.950)+(0.$)(4.286)+(1)(2)

T2 .2 (2.1) - 0.089 ,

T3,2 (2,1) - 0.178

L1,2 (2,1) - (0.089) (2.950) - 0.263
I -

L2,2(2,1) - (0.089) (4.286) - 0.381

L3 ,2 (2,1) - (0.178) (1) - 0.356
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1 (2,1) - 0.491 + 0.263 - 0.754

L2 (211) - 1.186 + 0.381 - 1.567

L3 (2,1) - 0.322 + 0.356 - 0.678

Caloulations for v - (2.2) :

Ul.,1(2,2) - (2) (1.842) - 3.684

R2.1(2.2) - (4) (2.233) - 8.932

13.1(2,2) - 1

(0.5) (2)
T1,1(2"21 = (0.5)(3.684)+(0.5)(8.932)+(1) (1) 1

T2 ,1(2,2) - 0.137

T3,1 (2,2) - 0.274

Ji,,(2,2) - (0.137) (3.684) - 0.504

,I(2,2) - (0.137) (8.932) - 1.222L2,1,

L3 ,1 (2.2) - (0.274) (1) - 0.274

S1,2(2.2) - (2) (1.754) - 3.508

R2,2(2.2) - (2) (2.567) - 5.134

3,2)(2,2) - 2

(0.5) (2)
T1 .2(22 (0.5) (3.508)4(0.5) (5.134)4(1) (2) 018

T2,2(2,2) - 0.158

T3 ,2(2,2) - 0.316
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L1o2 (2,2) - (0.158) (3.508) - 0.555 .,*

L2.2 (2,2) - (0-.158) (5.134) - 0.812

L3,(2.2) - (0.316) (2) - 0.633

L1 (2.2) - 0.504 + 0.555 - 1.059

12(2,2) - 1.222 + 0.812 - 2.034

L3(2,2) - 0.274 + 0.633 - 0.907

Utilization Calculations

pl,1(2,2) - (2) (0.137) - 0.274 ''

P2 ,1(2,2) - (4) (0.137) - 0.548

p3,1(2.2) - 0 %

P1 2 (2.2) - (2) (0.158) - 0.316

P2,2(2.2) - (2) (0.158) - 0.316 V,

P3 2(2.2 ) - 0

P1(2,2) - 0.274 + 0.316 - 0.590

P2(2.2)- 0.548 + 0.316 - 0.864

p3 (2.2) = 0 . ,., ..
a

Normalizing Constant Calculations:

(1) (0.5) =
G(0,1) 4 .2O.125

G(0,2) - 2(OS 9.0090. 222 -- ".0" %. .
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(1) (0.5)

0 125%

(4) (0.5)
G(111) 0. - 19.0480.105

(11,2) - (9.009) (0.5) 51.188
0.088

(4) (0.5)
G(2,0) = - 10.526

0.190

(19.048) (0.5)
G(2,1) 0.161 -9.1552

(2,2) - (51.188) (0.5) %

0.137 186.818

This problem demonstrates the primary reason why there are no

examples of NVA in open literature, and very few examples of the other

algorithms. Simply put, they are Just too long! In addition, the

calculations are iterative in nature and best done by a computer. The

problem is that if one does not understand how to apply the algorithm.,

then they would not be able to write a computer program to do the

calculations.

Appendix B is the listing of a computer program for multiple

chain, load independent, closed networks. The code was written in Turbo

Pascal, and is for an IBM PC or compatible computer. The program

assumes that there is only one class of customers per chain. Therefore,

if there are multiple classes per chain, the users must merge these
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into an equivalent class (See Chapter 6, Section 6.5.3 where customers

are disting ished according to chains rather than class). In addition,

the user must calculate the relative throughputs and supply them to the

program. It is usually trivial to find the relative throughputs, and it

was felt that this would be better than prompting the user for the

routing probabilities (there are always more routing probabilities than , .

throughputs).

7.2.6 Load Dependent - Multiple Chain - Closed Networks

As before, for service centers with limited load dependent service ..

rates, the equation for the response time is in terms of marginal

probabilities. More precisely, .

.j(v)- ki sij(ki) Pi(ki-1IV-lj) . (7.22)

where Ilvi +v2+ "'+V, and .

1q 2

1 for ki-O and IVI=O

Pi(kilV) = sij(ki) Tij(V) Pi(ki-IIV-lj) for ki>O and IVI>O

1 - Pi(kilV) for ki-O and Ivl>o.
k 1 1 (7.23)

Also as before, these same recursive equations apply to service

centers that are load independent. In order to illustrate their use, a

second server will be added to service center one of the previous
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multiple chain example and the problem reworked. The input parameters 6.

for the mod-i are: i

9 11 0.5 e1,2 - 0.5

02,1 , 0.5 2,2 m 0.

r2 for ki=I for k =-
s1,2(ki) 31fo k~ l,2i - ::k

for ki)l .2 1 for ki)l

82,2 ' 4 s2.2i2 ,..

83*2 M1 *322

T2 ,1(V) - (e2,1/e1 ,1) TI,l(V! - (1) TI,l(V)

T3 ,1(V) - (03,1/*1l1 TIl(V) - (2) TI,l(V) .

T2,2(V) - (e2 ,2/1 1 2 ) T1 ,2 (V) - (1) T1,2 (V)

T3,2(V) - (e3,2/e1,2 ) T1,2(V) - (2) T1 ,2(V). .*.*-"

Calculations for v = (0,1)

31,2(0,11) - (1) 1,2(1) Pl(00,0) ..

= (1) (2) (1) - 2

R2,2(0,1) - (2) (1) - 2

3,2(0-1) - 2

(0.5)1 0.12(1)
T1o2(01) (0.5)(2) + (0.5)(2) + (1)(2)

T2 .2 (011) - (1) (0.125) - 0.125

T3 . 3 (0,1) a (2) (0.125) - 0.250

*V. "*.,.232 -. -V'
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I,2(0,l) - (0.125) (2) - 0.25 - L1 (0,l)

-,1(0,1) - (0-.125) (2) - 0.25 - L2(0,1)

L3,1(0,1) - (0.230) (2) - 0.50 - L.3(0.1)

P1 (1I0,1) -51,2(l) T1,2(0,1) P1(010,0)

- (2) (0.125) (1) -0.25

P (010,1) - 1 - 0.25 - 0.75.

Calculations for v - (0,2)

11,2(0.2) - (1) 81L,2(1) Pl(0I0.1) + (2) 51.2(2) Pl(1t0,1)
%

- (1) (2) (0.75) + (2) (1) (0.25) -2

R2,2(0,2) - (2) (1.2S) - 2.5

132(0,2) - 2

T (0.2) - (05-2 0.2351,2 (0.5)(2) + (0.5)(2.5) +(1)(2)

T2.2(0,2) - (1) (0.235) - 0.235

T3 ,2(0.2) - (2) (0.235) - 0.471

L.1,(0,2) -(0.235) (2) -0.471 - [.(0,2)

L.2,2(0,2) -(0.235) (2.5) -0.588 L [2(0,2)

3,2(0,2) - (0.471) (2) -0.941 L [3(0.2)

P1(1I0,2) -121)T 2 (0.2) P1 (0I0,1)

- (1) (0.235) (0.25) - 0.353 . .-

P1(210,2) - s1,2(2) T, (0.2) Pl(1t0,1)

- (1) (0.235) (0.25) -0.059

P1(010.2) - 1 - (0.353 + 0.059) -0.588
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Calculation.. for V (1,0)

-(1) (2) (1) -2

12.1(1,0) -(4) (1) -4

R3,1(110) I

0) ~(0.5) (1)0.2
l,1~l (0.5)(2) + (0.3)(4) + ()1

2 .1 (1,0) -(1) (0.125) - 0.125

T3,1 (1,0) -(2) (0.125) - 0.250

(0)- (0125) (2) - 0.25 - LI(1,0) - rf

2,1(1,0) - (0.125) (4) - 0.50 - L2(1,0)

3,1(1,0) - (0.250) (1) - 0.25 - LS(1.0)

P1 (1I1.0) - Sill T1 ,1 (110) P1 (0I0,O)

- (2) (0.125) (1) -0.25

P (011.0) - 1 - 0.25 -0.75

Calculationa for v -(1.1)

(1) (2) (0.75) + (2) (1) (0.25) -2

R2,1(1,1) -(4) (1.25) -5
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T1 1 (111) (0.5) (1) 0.111
-0,5)(2) + (0.5)(5) +(1)1 01

T2o1(1.11) " (1) (0.111) ,.' 0.111 ,

T3,1(1,1) - (2) (0.111) - 0.222

11,1(1,11 - (0.111) (2) - 0.222 e

L2,1(1,1) - (0.111) (5) - 0.555

I3,1(1,1) - (0.222) (1) - 0.222

1,211 - (1) l.2(1) Pl(011.0) + (2) .,2(2) Pl 1 11,0)

- (1)(2)(0.75) + (2)(1)(0.25) - 2 -U-

,.211.1 - (2) (1.5) - 3

3,2(111) - 2

10.1111) 
- 0.111

T1,2(111) - (0.3)(2) + (0.5)(3) +(1)(2)

T2 .2 (111) - (1) (0.111) - 0.111

T3 ,2(111) - (2) (0.111) - 0.222

•*., ",%p

L1 ,2 (1,1) - (0.111) (2) - 0.222 '...

12,2(11l) - (0.111) (3) - 0.333 .- '.

L32(111 - (0.222) (2) - 0.444

L1 (1.1) - 0.222 + 0.222 - 0.444

L2 (1,1) - 0.555 + 0.333 - 0.888

L3 (1,1) = 0.222 + 0.444 - 0.666

235.. ..
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P11111.1) - s1.11) "1.1(1.1) PI(01O.1) + 61.2(l) T1°2(111) PI(01l°0)

--(2)(0.111)(0.75) + (2)(0.111)(0.75) - 0.333

P1(211.1) - 81.1(2) T1 ,1 (1.1) P1 (110.1) + 81.2(2) T1 .2(1.1) Pl1(11.0)

- (1)(0.111)(0.25) + (1)(0.111)(0.25) - 0.056

P1 (011.1) - 1 - (0.333 + 0.056) - 0.611

Caloulations for v - (1.2)

l,1(l.2) -(1) 51.1(1) P1 (0I0.2) + (2) sii(2) PJ 1 0,2)

+ (3) 61,10) P 1 (210.2)

- (1)(2)(0.588) + (2)(1)(0.353) + (3)(1)(0.039) - 2.059

R2.1(1.2) = (4) (1.588) 6 6.352 ---

R3,1(1,2) - 1

T1 2) (0.5)(1) = 0.096
T1,11 =(0.3)(2.059) + (0.5)(6.353) + (1)(1)

T2 ,1 (1.2) - (1) (0.096) - 0.096

T3,1(1,2) ( (2) (0.096) - 0.192

L1 ,(1.2) - (0.096) (2.059) - 0.198

.1(1.2) - (0.096) (6.3S2) - 0.610 e

L3,1(1,2) - (0.192) (1) - 0.192

11,2(1.2) - (1) *1.2(l) P 1 (0I1,1) + (201 8,2(2) Pl(111.1)

+ (3) 81.213) P1(211,1)

- (1)(2)(0.611) + (2)(1)(0.333) + (3)(1)(0.056) = 2.056 ..

3L.,2(1,2) - (2)(1.888) - 3.776

13.2(1.2) - 2
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(0.5) (2) - 0.203

1 ,2 (12) "-(0.5)(2.056) + (0.5)(3.776) + (1)(2) V,

T2 .2(1.2) - (1) (2.03) - 0.203

T3 ,2 (1,2) - (2) (2.03) - 0.407

L1,2(1.2) - (0.203) (2.056) - 0.417

2,2(l.2) - (0.203) (3.776) - 0.767

L3 ,2 (1.2) - (0.407) (2) - 0.814

Ll(1.2) - 0.198 + 0.417 - 0.615 %

(11.2) - 0.610 + 0.767 - 1.377

L3 (1,2) - 0.192 + 0.814 - 1.006

P1 (111,2) s1,111) T1 , 1 (1,2) P1 (00.2) + S1.2(1) T1.2(1.2) P 1(011D1)

= (2)(0.096)(0.588) + (2)(.203)(0.611) - 0.361

P1 (211,2) - 81,1(2) T1 ,1(1,2) Pl(110,2) + S1,2(2) T1 ,2(1.2) Pl1(11,1)

- (1)(0.096)(0.535) + (1)(.203)(0.333) - 0.101

P1(311,2) - s1,1(3) T1 ,1 (1,2) P1 (210.2) + 81,2(3) T1,2 (1,2) P1 (211.1)

- (1)(0.096)(0.059) + (1)(.203)(0.056) - 0.017

P1 (011,2) - 1 - (0.361 + 0.101 + 0.017) = 0.521 .

Caloulations for y12D0) --..
',, s .

RL,1(2.0) - (1) 81.(1) P 1(011,0) + (2) si11(2) Pl1111,0) a @L

- (1)(2)(0.75) + (2)(1)(0.25) - 2

R2.1(2,0) - (4)(1.5) - 6

R3,1(2.0) - 1
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- (0.5)(2) 0.20
"1 1 12.01- (O".$) (2)+(0.5) (6)1 (1) -I

T2 1(2,0) (1)(0.20) = 0.20

T3,1(2,0) - (2)(0.20) - 0.40

i,1(2,o) - (0.20)(2) - 0.40 - (2,o)

2,1(2,0) - (0.20)(6) - 1.20 - L2(2.0)

S.31(2,0) - (0.40)(1) - 0.40 - L3 (2,0)

P1(112.0) - c.(l) T1 1,12,0) P 1(011.0)

- (2)(0.20)(0.75) - 0.300

P1(212.0) - 8111(1) T1 1 (2,0) Plllo0)

- (1)(0.20)(0.25) - 0.050

P1 (012.0) - 1 -(0.300 + 0.050) - 0.650 .

Caloulations for v-(2.1)

R 1,112.1) - (1) Sl,l(1) P11011,1) + (2) s1,1121 Pl1111,11Q '

+ (3) 81,10)1 P1(211,1)

- (1)(2)(0.611) + (2)(1)(0.333) + (3)(1)(0.056) - 2.056

R2,(2.1) - (4)(1.888) - 7.552

R3,1, a 1

T(2(0.) (2) - 0.172
'11 (0.5)(2.056)+(0.S)(7.552)(1)(1)

T2,1(2*1) - (1) (0.172) = 0.172

T3,1 (2,1) - (2) (0.172) - 0.345
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I"1 1(21) - (0.1721) (2.056) - 0.354

12,1(2.1) - (0.172) (7.552) - 1.299

L3 ,1(2.1) - (0.345) (1) - 0.345

I1.2(2,1) - (1) 81,2(1) P 1(012,0) + (2) sl,2(2) Pl1(112,0)

+ (3) 1,2(3) P1 (212,0)

- (1)(2)(0.650) + (2)(1)(0.300) +(3)(1)(0.050) - 2.050

R2,2(2,1) - (2) (2.20) - 4.40 i -P

R3,2(2,1) - 2

(0.5)(1)
T1,1 (2.1) - (0.5)(2.050)+(0.5)(4.40)+(1)(2) - 0.096

T2 , 2 (2,1) - (1) (0.096) - 0.096 -

T3 ,2 (2,1) - (2) (0.096) - 0.191

) .-

L1,2 2,1) - (0.096) (2.050) = 0.196

L2,2(2,1) - (0.096) (4.40) - 0.421

L3 ,2 (2,1) - (0.191) (2) , 0.383

_.1(2,1) - 0.354 + 0.196- 0.550

L2(2,1) - 1.299 + 0.421 - 1.720

L3(2,11 - 0.345 + 0.383 - 0.728 I

Pl1(11.2) - si,1() T,1(2,1) P1(011,1) + s1,2(2) T1 ,2(2,1) Pl1(012.0)

- (2)(0.172)(0.333) + (1)(0.096)(0.650) - 0.335

P 1(212,1) - s1,1(2) T1 ,1(2,1) Pl1(111) + sl,2(2) T1,2(2,1) Pl1(112,0)

- (1)(0.172)(0.333) + (1)(0.096)(0.300) - 0.086
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P1 (312.1) -41.10) T1. 1 (2.1) Pl(2o1.1) + 1.2(3) T1,2 (2.1) P1 (212.0)

- (1)(0.172)(0.056) + (1)(0.096)(0.050) - 0.014

P1 (012.1) - 1 -(0.335 + 0.0866 + 0.014) - 0.565

Caloulations for v-(2.2)

RI,1(2.2) - (1) sl1,11) Pl1(011.2) + (2) sl,l(2) Pl(111.2)

+ (3) Sl131 P(211.2) + (4) s1,1141 Pl(311.2)

- (1)(2)(0.521)+(2)(1)(0.361)+(3)(1)(0.101)+(4)(1)(0.17)

- 2.135

R2,1(2,2) - (4) (2.377) - 9.508

R31(2,2) " 1 -

(0.5) (2)

- -(.2 0.147 .

T1,(2") "(0.$)(2.135)+(0.$)19.$08)+(1)(1)"0.4

T2 .1 (2.2) - (1) (0.147) - 0.147

T3,1 (2,2) - (2) (0.147) - 0.293

L1 , 1 (2,2) - (0.147) (2.135) - 0.313

L2 ,1 (2.2) - (0.147) (9.508) - 1.394

L3 ,1 (2.2) - (0.293) (1) - 0.293

l.2(1.2) - (1) 81,2(1) Pl(012.1) + (2) 1.2(2) Pl(112,1)

" (3) Sl,2131 Pl1212,11 + (4) Slo2(41 P1(312,11 )

R2.2(2,2) - (2)(2.720) - 5.440

3.2(2.2) - 2
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(0.3)(2) 0.173

T1 2 12.21 - 0.5)(2.114)+(O.)(5.4404(1)2 (2) L

T2 .2 (2,2) - (1) (0.173) - 0.173

T3,2(2,2) - (2) (0.173) - 0.346

l,12(22) - (0.173) (2.114) - 0.366

12,2(2.2) - (0.173) (5.440) - 0.942

3 .2 (22) - (0.313) (2) - 0.692

1,(2,2) - 0.313 + 0.366 - 0.679

L2(2,2) - 1.394 + 0.942 - 2.336

L(2,2) - 0.293 + 0.692 - 0.985 "

P1 (112,2) - 81,1(1) T1,1(2,2) Pl1(011.2) + 81,2(1) T1 ,2(2,2) PI(012,1)

- (2)(0.147)(0.521) + (2)(0.173)(0.565) - 0.349

P 1(212.2) - *1,1(2) T1 ,1(2,2) P1(111.2) + 81.2(2) T1 ,2(2,2) P 1(112,1)

- (1)(0.147)(0.361) + (1)(0.173)(0.335) - 0.111

P1 (312.2) - s,113) T1,1 (2,2) Pl1(211.2) + 81,20) T1 ,2 (2,2) P1 (212.1)

- (1)(0.147)(0.101) + (1)(0.173)(0.086) - 0.030

Pl1(412,2) - s,1(4) T1,1(2.2) Pl1 311.2) + s1,214) T1 .2(2.2) P1 312.1)

_= (1)(0.147)(0.017) + (1)(0.173)(0.014) - 0.005

P1 (412,2) - 1 - (0.349 + 0.111 + 0.030 + 0.005) - 0.505

, % % *

Utilizationa:,b' '

p1 (2.2) - ((1)(0.349)+(2)(0.111)+(3)(0.030)+(4)(0.005)J/2 - 0.341

P2(2.2) - (4)(0.147) + (2)(0.173) - 0.934

p3(2.2) - 0.

241

%,'.



Normalizing Constants:

G(o.1) = -14(0.5) =4
0.125

G(0,2) , (4)(0.5) 8.511
0.235

G(1,0) - (1)(0.4) -4
0.125

(1,1) " 1410. 18.018
0.111

6(1,2) - (8.511)(0.5) - 4.328
0.096

G(2.o) -(4)(0.5) 10 
0.2

G(2,1) - (18.018)(0.) 52.378.' .
0.172

;.

(44.328) (0.5)
G(2,2)- (447 - 150.7760. 147" ,,,

As previously stated, the examples in this chapter are believed to -

be the only examples of NVA in open literature. In view of the length A%

of this example, it should not be surprising that it is believed to be

the only multiple chain, load dependent example-period.
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7.3 Mixed Networks

A mixed network is one with both open and closed chains. Customers

in the closed chains and their service requirement, do not affect the

stability of the network [I(BS751. That is, a mixed network is stable, ,..

if and only if, piopen < 1. for all I other than IS service centers

(Piopon is the utilization of service center I due to the open chain

customers). The open and closed chains have a surprisingly simple and

limited impact on each other. In fact, if the mean arrival rates of the .,

open chains are constant and all service rates are load independent,

then the response time is given by

1(jlV) -8j [1 + LI(V-lj ]  (7.24)
= M (7.24) "5%

ii 'ilopen

where Li(V-j) is the mean number of closed chain customers when the

population vector is V-lj [ZAHOglI. Similarly, the response time for

open chains is
3(V) - 5 j (1 + Li(V)] -"(.25
i 1 iope (7.25 %

The reader is referred to the earlier reference for a proof of these

two equations. Note that it is only necessary to compute the open chain..

utilizations in order to determine closed chain metrics. Once the -S

closed chain metrics have been determined, those of the open chain can

be calculated. The procedure is best illustrated by an example. Figure

7.3 depicts a mixed network with two service centers. The

specifications of the network are given in Table 7.5. The following

calculations assume an arrival rate of 0.3 and two customers in the

closed chain.
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ft.00

Figre .3 zaal*of aMixed Netvk.

Service Number of Servic Server Server
Center Servers Discipline Rate i RateP1

1FCFS 1/2 1/2

2 is 1/3 1/10

Table 7.5 Description of Service Centers in Figure 7.3.
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Calculations-

1, 0.3

al. 1  2 6l. 1 =1 -.';I

s2,1 3 2.11

S1,2 w 2 1*2in

2.2 10 02. 2

Obviously the throughput of the open chain is equal to the arrival

rate. genc*,

T1 , 2 - T.2 - 0.3

The utilization at service center 1 due to the open chain is:

- (0.3)(2) - 0.6

The performance metrics of the closed chain can now be determined.

Calculations for v 1:

li ) 1 - 0.6

J& P

R2,1(1) 3

(1) 11) - 0.125T111)=(1)(5) + (1)(3)%

T2 ,1(1) - 0.125

LlI(I) - (0.125) (5) - 0.625

L2 ,1(1) - (0.125) (3) - 0.375 .

S .%
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Calculations for v w 2

(2) 11.625)-812
R 1()-- - 0.6 8.2

32,1(2) - 3

,(2) - (1) (2 1 0.180 )

i'l (1)(8.125) + (1)(3)

T2 ,1 (2) -0.180

L1,1 (2) - (0.180) (8.125) - 1.461 *J

2,1(2) - (0.180) (3) - 0.539

P1,1 -(0.180)(2) -0.36 i

Now that the &ettics of the closed chain have been determined,

those of the open chain can be calculated as follows:

R ~(2) (2 1(2.461) 12.305

R2,2(2) - '2,2 - 10

L1.2 (2) - (0.3) (12.305) -3.692

L2 .2(2) - (0.3) (10) - 3

The normalizing constant of a mixed network can be expressed as 'Y- P

the product of two smaller normalizing constants, one for the open

chains and the other for the closed chains. It follows from the
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previous chapter that the open chain normalizing constant is:

N
- Gl.opn) - II Gi ,

ifti
-1

[I 2 b(ei./Pii)] for i F(s, PS, or LCFS

where G, .whereep [ ,(eic/. for i Is.

exp e/pd
a (7.26)

The normalizing constant of the closed chains can be determined %

from the throughput theorem as before, or both normalizing constants

can be merged into one by observing that G(v) is directly proportional

to G(O) for all v. Thus, the two normalizing constants can be combined

into one by simply defining G(O) as G(open), The procedure will be

illustrated by finding the normalizing constant in the previous _

example.

G(open) 1-0.6

G(O) ( ;(open)

GO() (50.214)(1)
=() e " = 401.711 I0
T, 1(1) 0.125

2 G(1) (401.711)(1) - 223726
G(M) -T1 1 (2) el -

As before, it is simple to extend the equations for multiple

chain, load independent networks. However, the limited load dependent
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case is considerably more complicated even for single chain networks,

and will not be discussed here [REIS83]. In fact, the equations will .

not even --listed for reference purposes because this would 
require IrA

redefining the notation that has previously been used and would only

complicate matters.

7.4 Closed Qnoains Networks without Product Form Solutions

A major advantage in the analysis of closed queueing networks over

open and mixed networks is that if the network can be represented by a

'pure' Markov process then, theoretically, a solution can be obtained.

That is, since the number of customers is finite, the number of network

states is finite, and thezefore the process can be completely described

by a finite set of linear equations which equate the rate of flow into

a network state to the rate of flow out of the same state. Thus, the

set of linear equations can be solved to obtain steady-state

probabilities, and the other performance metrics can be obtained from

these.

The procedure will be illustrated by an example. Consider the two

service center network in Figure 7.6. It is assumed that service center

contains an infinite number of servers and that the service center 2

contains a single server and the service discipline is nonpreemptive ,

priority. It is also assumed that all service times are exponentially

distributed and that the number of customers in each of the three

chains is one. Since there is only one customer per chain, let the

numbers 1,2, and 3 represent these customers and let the network state
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CHAIN 1

CHAIN 2

CHAIN 3

PRIORITY
is

Figure 7.6 Closed Network Without a Product Form Solution.

be defined by PE(z)(y)] where (z) and (y) specify the customers at

service centers 1 and 2, respectfully. Now since service center 1

contains an infinite number of servers, the order of custarsers at this

service center is not important, however since service center 2 has .p.

only a single server and its service discipline is nonpreemptive
V

priority, the specification order is important and must be included in

its state specification. For example, P[(2),(3,1)] represents the Ne4,
network state where service center 1 contains the chain 2 customers and

service center 2 contains the chain 3 and chain 1 customers. Note that ,-

the chain 3 customer is currently being served at service center 2.

Also note that P[(0),(2o3,l)] is not a legitimate network state because

when the chain 2 customer finishes service, the chain 1 customer will

be served before the chain 3 customer. The steady-state equations

describing the network are:
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i21P[1P(1-2.3)J - 912P[(2)(1.3)J * P101[0)(1.2)]

P22P[(0)(2,1,3)J - plPE(1)(2,3)1 + g13PE(3)(2.1)J

i23PC(O)(3.1.2)J - PlIP[(1)(3.2)J + P12P((2)(3.1)J

(P214.F13)P1(3)(l,2)J - P12PEU2,3)(1)] +. P 3P[(O)(3.1.2)J

(PlP2P()l31- ji3P((2.3)(1)] + i22P[(0)(2.1.3)J

(P22Pl3P1()(2l)1- I 11PE(1.3)(2)J

(P22PllP[()(23)1- ii13P[(1.3)(2)J + I21P[(0)(1.2.3)J

(P234.Pl2)PC(2)(3.1)J - P1II2()

(P23+ga11)PC(1)(3,2)J - P12P[(1.2)(3)]

(P~lPl2Pl3P[(,3)l)1- pl 1PC(1,2.3)(O)J +. P22PC(3)(2,Il

(P224.1a1 4.1a3)P(l,3)(2)3 - 5 12P'(1,2,3)(O)J 4 1 21P[(3)(1.2)J

+ P23P(1)(3,2)]

(P234.tlli4.i2)P((l,2)(3)J m g 13P((1,2.3)(0)] +. i2lPC(2)(1,3)J

+. 922P((l)(2.3)J

(Pll4.Pl24Pl 3)P[(l,2.3)(O)J - P21PE(2.3)(1)) + j22P[(1,3)(2)J

+ i23PC(1.2)(3)J

Several key issues about these equations used to be emphasized.

First and most significant is that local balance does not apply. and q

therefore, the procedure used to obtain the solution of networks with '>

product form does not apply (nor can it be extended to do solll).
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Secondly, there is no simple equation, as in the case of networks with

product form solutions, to find the number of feasible networks states.

That is. there is no easy way to determine the number of equations

necessary to fully describe the process. Finally, the equations are

less symmetrical than those of networks with product form solutions,

and thus are considerably more complicated to write. Fortunately,

however, there is a way to check them. If the equations are put into

matrix form, then each column must sum to zero. The reason for this is

that the set of equations are dependent. To obtain an independent set, .

one of the equations (any one) is replaced with conservation of
ti.

probability equation (summation over all probabilities equal one).

Returning to the problem being considered, once the steady-state

probabilities have been determined all other performance metrics can be

found. Performance metrics by class can be obtained from the steady-

state probabilities via the following equations:

Lii - P[()(2.3)] + P[(l)(3,2)] + P[(1.3)(2)1

+ PE(l.2)(3)J + PI(l.2.3)(O))

1,2 -PC(2)l,3) + P[(2)3.l + PE(23)l)

+ P[(1,2)(3)] + P[(1,2,3)(0)]

L P[(O)(1.2.3)] + P[(O)(2.l,3)J + P[(O)(3,1,2) + P[(3)(1,2)J

+ P[()( ,3) + P((3)(2.1)1 + P[(0)(3,1) + P(2,3)(1)1
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L202 - PC(O)Il2.3)J + P[(O)(2.1.3)J + PE(O)(3.l,2)J + P[(3)(1,2))

PC(3)2.1)] + PE(l)(2.3)J + PE(1)(3.2)J + P[(1.)(2)

L2.3 - PE(O)(l,2M3) + P(O)(2.l.3)] + P[(O)(3.l.2)) + P((2)1.3)

+ PC(l)(2.3)] + P((2(3l) + P[(1)3.2) + P[(1.)(3)

-l la P1 P1 0 (by definition)

P21 PE(O)(1,2,3)] + PC(3)l.2) + P[(2)1.3 + P[(23)l)

P2 .2 -PEUO)(2.1.3)J + PC(3)2.l)J + PE(l)(2.3)J + PCC1.3)(2)J

P2.3 -PE(0)(3,1.2)1 + P[(2)(3,1)J + P[(1)(3.2)J + P[(1.2)(3)J

71 ,1 -T 2 .1 - P2.1 112.1

T -, T2 -w2,2 P12.2

T1.3  T2. P2.3 P'2,3

R1,l lip1,, R2.1 - 2.1/72 .1

R1,2 -/l. R 2.2 -12, 2/7 2.2

R1.3 - /pl3 R2,3 L 2. 3 1T2.3  
":L

Performance metrics of the individual service center are obtained via

the following:

Llw-~ + L1 .2 + L1.3

12 - L21+ L2,2 + L2.3

T1 - 2 1.Tl1 +1.2 + 1.3

R1m - R~ T 1 ,1 + R1,2 T2.2 + R1.3 T1 .3 ) I

' 

%
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R2 - (2.1 T2. 1 + 2o2 T2. 2 + R2.3 T2 .3 ) / T2
P2l 0-- 3,

P2 P2,1"-+'-P2,2 + P .2

For example if

P11 n P12 w 913 - 500

P21 n P22 n 123 m 1,000.

then the steady-state probabilities are: .-

P[0)(1,2.3) - 0.06203

P[(0)(2.1,3)] - 0.05468

P[(0)(3,1.2)] - 0.04119 -

P[(3)(1o2)] - 0.05754

P[(2)(1,3)J - 0.06653

PE[(3)(2,1)] - 0.03340

P[(1)(2,3)] - 0.07536

P[(2)(3,1)1 - 0.04119

P[(1)(3o2)] - 0.04119

P[(2o3)(1)] - 0.09023 .p-,,..

P[(1,3)(2)) . 0.10199

P[(1,2)(3)] - 0.12357 '.

P[(1,2,3)(0)] - 0.21053

and the performance mtrics are:
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i.1 - 0.5263 12.1 - 0.44737

-l 1 2 - 0.$3204 1.2, - 0.46796

1.3 - 0.49428 L2,3 - 0.50572

L1 - 1.57895 L2 - 1.42105

T1. - 276.32 T2 .1 - 276.32 4,

T1 ,2 - 266.02 T2 .2 - 266.02

T1 . 3 - 247.14 T2 . 3 - 247.14

T1  - 789.48 T2  - 789.48

R,1 - 2E-3 R21 - 1.61901-3

1,2 - 21-3 R2.2 - 1.7591B-3

',3 - 2E-3 R2.3 - 2.04631-3

R, - 2.01-3 R2 - 1.80009-3

P1 . 1 " 0 - 0.27632

P1 0 p2 2 " 0.26602

P1-3 0 P2.3 " 0.24714

P " 0 P2  - 0.78948 . S.',

Some additional comments are appropriate. First, the procedure

cannot be applied to all closed queueing networks. The network must be

be representable by a 'pure' Iarkov process. That is. all of the

service time distributions must be exponential or must be able to be

represented by exponential stages. Note that if the service time

distribution contains a discontinuity, then an infinite number of
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exponential stages is required. For example, if service time is

deterministic, then it cannot be represented by the method of stages.

There is also a practical limit to the number of equations that can be -

solved. Recall that the number of network states increases rapidly with

the number of customers, chains and service centers. It also increases

rapidly if the service time must be represented by the method of

stages. It is not unusual for even a small two service center network

to have well over 1,000 states. Finally, as previously stated, an open

network that limits the customer population to some finite number is

equivalent to a closed network. Thus, in theory the procedure can be

applied to these networks, however, more often than not the number of

feasible network states prohibits it. .

2

.r , . -,
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CIAPTER 8

CONCLUSIONS

8.1 The Deceptive Service Center

Figure 8.1 depicts a simple service center. Customers arrive at

the service center, wait in line for one of the two servers to become

free, receive service, and depart. One would surely think that for such

a simple system equations for the mean performance metrics could be -

derived. However, this is an open research problem, and has only been

solved for two special cases (LAVE831. These cases weore discussed in '

this text and are (1) the X/K/m system, and (2) the K/Gin system with -

LCFSPR service discipline.

r~

I ,I .
SERVERSI

ARRIVING DEPARTING

CUSTOMERS I CUSTOMERS

SERVICE CENTER

Figure 8.1 A 'Simple' Service Center. ? '

Obviously, this 'simple' problem has boon around for quite some

time, and what makes it so deceptive is its simple representation. This

problem symbolizes the paradoxical nature of the discipline. 9iJ
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8.2 Foundation

Most of the material covered in chapters 1 through 4 contains

material normally taught in a graduate level course(s). The material

was presented here as foundation to support the thrust of this text:

Narkovian Network Theory'. Clearly, before one can analyze a network

of service centers, one must first learn how to analyze single service
./

c e n t e r s . , , -L .

8.3 Contributions

Chapter 5 contains the only known example of local balance being _-,-*

used to solve a network of two or more service centers. In addition, it

was illustrated by examples that if the arrival rate to a network -

varied according to the number of customers in the system (up to some

finite number after which arrival ceased), then the network could be

mapped into an equivalent closed network (also applies to networks in

Chapter 6). This was stated by other authors, but again, these are

believel to be the only known examples in the literature. It was also

stated by others that the service rate of a service center could be a 'WIN

function of both the number of customers in the service center and of
". .% %

the number of customers in a subset of service centers, however, no

references were given. This was proved in Chapter 5.

Credit for the pioneering work in Chapter 6 belongs to the authors

Baskett, Chandy, Kuntz, and Palacios. however, in order to clear up the

ambiguities in their paper it was necessary to rederive most of their ON,

equations and to derive some that are not present. The reasons for this
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were: (1) When representing nonexponential service tine by the method

of exponentlal stages there is a finite probability that a customer

will ezp--Tence a zero length service time. They acknowledged this in - .

their paper, but they did not include its existence in their

derivation. Such an existence was illustrated in the example liven in

section 6.2 where this probability was 1/4. (2) Even for the less

general case that they did consider, their equations for fi(zi) which

contain terms that account for the stages, are erroneous (indices and

subscript errors).

As a result of considering the more general case, a general

equation for the mean service time, in terms of the mean service time

at each stage was derived. This equation is necessary in order to -

derive the equations for the aggregate network states, but such an

equation was not given in the original paper. A third aggregate state,

which combines all classes in a chain into one 'equivalent class', was "

not included in their paper, but followed easily from the rederivation

(this state was alluded to by other authors and probably exists
U.

sonewhere in the literature, but was not found). This state

significantly reduces the anount of work that is required to determine

the normalizing constant.

The process of rederiving the equations for the fi(xi)'s resulted

in a much clearer understanding of types PS and IS service centers.

There is never a queue or waiting line at these types of service

centers. In addition, all customers are receiving service sinul- ,'.. ,

taneously. Thus, for type IS service centers each stage behaves as an
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independent service center. The only difference for type PS service

centers is that the service rate at each stage depends upon the total

number of-ustomers. It was proved in Chapter 5 that the service rate

of a subset of service centers could depend on the number of customers

in the subset. Thus, in both cases the stages behave as service centers

with an exponential service time.

It follows from this that the proofs given in Chapter 5 are

sufficient for networks with types FCFS, IS, and PS service centers

(classes and nonexponential service tines are allowed at IS and PS
,". *"*

service centers, but not at FCFS service centers). The theorem given in

the paper applies to these cases and to LCFSPR service centers with

nonexponential service times and classes. In addition classes are -
% %\

allowed at FCFS service centers under the constraint that they have the

same exponential service time distribution function. It is true, as the

authors state, that if the local balance equations are satisfied

(apply), then the theorem holds. However, the difficulty is in proving

that the local balance applies for any network composed of these types

of service centers. It can be shown to apply for specific networks, but

this was not done in their paper. There are several examples in this 4

text showing that local balance applies.

There are also several examples showing that if the network

contains service centers other than these types then local balance is

not applicable. For example, if the service discipline is FCFS and -.

different mean service times are allowed for different classes, then

the local balance equations are inconsistent. Another counter example
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is when the service discipline is nonpreemptive priority, in this case

not all the-global balance equations can be subdivided into local

balance equations, hence local balance does not apply. N.

Chapter 7 contains numerous examples illustrating how to apply the

Mean Value Analysis (IVA) algorithm to closed networks. Examples for

the following types of networks were given: single chain, load

independent; single chain, load dependen multiple chain, load

independent; multiple chain, load dependent; and single closed chain,

load independent mixed network. It was stated in this chapter that

these were the only known examples of the MVA algorithm, however, some

have been found for cyclic networks (cyclic networks are a special case

of single chain, load independent networks). -

In addition the concept of using the throughput theorem in

conjunction with NVA to obtain the normalizing constant is not

presented elsewhere. At present, there is no algorithm that can always

prevent overflow when trying to determine the normalizing constant

[LAVE83j]. In the event of overflow these algorithms fail. This is

irrelevant when using MVA since it does not depend on the determination

of this constant in order to determine the mean performance metrics.

The advantage of using the throughput theorem with MVA is that when ,. , '

overflow is not a problem the normalizing constant can be obtained and

even if overflow does occur, the mean performance metrics can still be

obtained. The disadvantage of this technique is that it requires more

memory, however, this is often not a problem. .'

Some of the contributions claimed may quite possibly appear %
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somewhere in the literature (in particular, the aggregate state that %

deals with chains, and the stage equation for the mean service time),

but the f-i-t that they were not found and had to be rederived indicates

that the material badly needed unifying. This was accomplished in this

work, and because of the subject matter and volume of the material, it

is believed to be a major contribution.

-

8.4 A Characterization of Networks with Product Form Solutions

For a network of service centers to have a product form solution '" •V

each service center in the network must meet one of the following sets IOe

of conditions [CHEM77] [CIANS3]:

(1) If the service discipline is FCFS, then the mean service time of -

all customer classes must be the same, and the distribution must be

negative exponential (each customer class may have its own set of

routing probabilities).

(2) If the service discipline is such that every customers starts to

receive some service immediately upon arriving, then each customer

class may have its own general service time distribution (the density

function must have a rational Laplace transform) and routing

probabilities. Note, service center types LCFSPR. PS and IS meet the
* 6

conditi6n that each customers starts to receive some service

immediately upon arrival. ..

In addition, if the network is open, then all arrival processes

from outside the network must be Poisson, and no queue can saturate

(utilization > 1).
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,q.

If a network meets these conditions then the steady-state

probability that the network is in state (xlx2...,hxN) is given by:

P1 (xl) P2(12) .. PN$XN)
P-xl'x2""'xN) G ,

where N equals the number of service centers, xI represents the

conditions prevailing at service center i, Pi(xi) is a factor'-'

corresponding to probability that service center I is in state i, and--

o is a normalizing constant chosen to make the probabilities sun to

one.

The factor Pi(xi) contains only parameters that pertain to service

center i. It is the same factor that results from assuming that the

arrival process is Poisson and analyzing the service center in

isolation. If the network is open and the arrival process does not *4

depend on the number of customers, then the mean arrival rate can be

uniquely determined. However, if the network is closed, then the

arrival rate (same as relative throughput) can only be determined -,
relative to the arrival rates at the other service centers. In this

case a positive value is assigned to the arrival rate at one of the

service centers. The others can then be determined (the normalizing ".-'.

constant will compensate for this). What is amazing about this is that,

in general, the arrival process at the individual service centers are

not Poisson What is even more amazing is that if one knew exactly what

the arrival process was he could not obtain an exact solution, since at

present only partial results have been obtained for the G//1 system.

It is important to emphasize that all of the solutions thus far
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have been obtained by guessing at the answer or by local balance (a

form of gues ng). In other words, the solutions can be proved by

substituting the guessed at results into the global balance equations

and determining if they or@ satisfied. However, at present, there is no

way to derive the results.

8.5 Anuroximate Solution to Queueins Networks

If a network does not have a product form solution then the -,

distribution of customers at a service center is a function not only of

the service center in question, but also of other parameters in the

network. This is an extremely difficult problem. One approach is to

make an assumption that allows an answer to be obtained (usually the -

assumption is true for networks with product form solutions and

hopefully an approximation for other networks), then to validate the

assumption by showing that the answer is close to the solution to the

problem that was (presumably) unsolvable. In other words an answer has .

to be obtained by some other means than queueing theory such as

*. simulation. If the assumption is tested for similar networks and it

also holds (produces small errors), then one can use it in the future

on similar networks without testing it. Such solutions are heuristic

and cannot be formally defended. At present all of the techniques for

obtaining approximate solutions fall into this category [SAUE8l].

Hence, for this reason they were not covered in this text. There are

quite a few heuristic approaches that can be used on closed networks,

but few have been extended or shown to hold for open networks (some

263

, .

., .,- .4,..,,. . S.,. ,:., .:,.:. .* ,. . . S*,-,: - .. .. , X. , - ., . .. *. . *:...,.. . . ,



have been shown not to be applicable CLAVE3). One of the reasons for

this is thi.t closed networks are in a sense self regulating and " -

therefore-iore predictable. Even for closed networks without product-

form solutions bounds can often be obtained, although they are somewhat

loose. It should be obvious that the development of heuristic

techniques is a trial and error procedure. In addition, one can spend

considerably more time trying to validate them than developing then.

8.6 Review of Latest Textbooks

Although there is still not a comprehensive text devoted to the

area of queueing network theory, three texts that use the theory were IL

published during the course of this research.

1. A Com uter and Communications Network Performance Analysis, by

B.!. Stuck and E. Arthurs, Printice-Hall, 1985. p

2. Performance Analysis of Local Computer Networks, by J.L.

Hammond and J.P. O'Reilly, Addison-Wesley, 1986.

3. Telecomunicstions Network : Protocols. Modelina and Analysis,

M. Schwartz, Addisson-Wesley, 1987.

8.6.1 Textbook by Stuck and Arthurs
8

The text by Stuck and Arthurs is the extreme opposite in almost

every way of the material covered here. As they indicate in their

preface, virtually no time at all is spent deriving results. Their

philosophy is suggested in the preface as: 'The crux of engineering,

in our opinion, is manipulating numbers in a great variety of ways to

gain qualitative insight into design issues via quantitative methods'.

61 . k.J
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A second motivation is given in terms of the mind-set of their Bell

Laboratory iraAJuato engineers: 'Many of then are simply not interested

in derivations'. Therefore, the widely used approach for deriving

fundamental results was purposely ignored in this text, whereas in

contrast, it is the derivation of fundamental relationships that

constitutes the purpose and content of this dissertation.

The book primarily focuses on closed networks and obtaining bounds

for such networks. Jackson-type networks are introduced in their

Chapter 6. The following two chapters are concerned with applications ,

of Jackson-type networks. However, the emphasis is heavily on 0.

obtaining bounds for these types of networks. Several hours were spent -

reviewing these two chapters, and although some Yackson-type equations

appear, it is doubtful that there is a single problem worked out using

them. The material on Jackson-type networks is perhaps the, worst in the

text. There is some material on open networks, however it is presented

in such a way that it is extremely difficult to extricate it from that .

on closed networks. In order to get around having to explain how to
.* . . q%

determine the normalizing constant, a computer program is simply given.

The approach use in these chapters seems to be to cover as many cases %,1,.
6

as possible and provide equations for these, rather than to stress the

fundamentals and provide a few general examples. ,

Single service centers are discussed, but only after networks of

service centers. Again quoting from the preface, the material in these -.

chapters (the last two) is the most mathematically sophisticated, and

requires the greatest intellectual maturity. It should also be noted
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that the only systems discussed in them are of the type K/Gi1. The

K/M/1 and K/im systems are not discussed here or anywhere else in the

book.

S.'.2 Textbook by Humond and O'Leil ly,

Hammond and O'Reilly devote very little effort to deriving the

basic queueing theory equations. For example, the mean performance

metrics of the K/G/l model are developed first. The equations for the

K/K/1 are developed from these. In the chapter on queueing theory a

total of three pages are spent on queueing networks. The emphasis is

on explaining the different types of queueing networks: open, closed

Sand mixed. The discussion on mixed network is ambiguous since the , '. I

figure referenced is an open network with feedback. Also, depicted in

this section is an open network with three service centers in tandem -

(the output of the first feeds directly to the input of the second,

etc.) and it is pointed out that: 'this tyve of Queueint network is of

the type most often used for modelina aultiaccess networks. and thus

S. \ %.
attention is restricted to this tve'. Burke's Theorem is then quoted

and it is stated that this type of network can be broken down into a

collection of K/M/l and K/G/l submodels. However, it should be noted..

that this statement cannot be formally defended. .,*

Burke's Theorem states that the output process of a M/M/m system

is Poisson and independent of all other processes in the system.

However, Burke also proved that it is the only such FCFS system with

this property [KLEI 75]. The procedure is used in the chapter on ring
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networks, and it is believed that their justification Is contained in

the followingtwo sentences: 'The interarrival times and the service

times are independent, thus the chain of station elements in Fig 8.22

can be broken up into independent submodels for each station. This

assumption, which results in a very tractable model, has been shown by

comparison to simulation results to give reasonably accurate, although

somewhat pessimistic results'. While the statement that the

interarrival times are independent is true, the arrival process is the %

sum of two processes, one of which is Poisson and the other non-

Poisson. Thus, it is believed that the second sentence is actually the

Justification for the first.

The following is quoted from the cover of the book 'the

performance models discussed are developed in as elementary a manner as AL

possible, often using a heuristic rather than a rigorous approach'.

There is nothing wrong with the approach, and it is one of the

strengths of the book, yet, it is necessary to know when assumptions

such as these can be made. If it is not clearly stated as an

assumption, and the conditions under which it is applicable are not

pointed out, then one is likely to misuse it.

8.6.3 Textbook by Schwartz

The book by schwartz relates more than any of the others to the

work contained in this dissertation. He devotes an entire chapter to

developing the fundamental queueing theory equations. However*

compared to Chapter 2,3 and 4 of this work the book is somewhat brief.
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For example, the strong connection between Marko processes and

queneing theoay is not explored. The M/Nl/ and M/1/2 are analyzed as

birth and death processes, however there is no mention of fact that

this is a special case of a Markovian process. He brings out the fact

that in the 1/G/1 system the service time is not memoryless, and one

can no longer set up a simple balance equation for states of the

system. He then proceeds to look at the system at only departure

instants without an explanation as to why this is being done (i.e.,

because an embedded Markov process exists at these points). He then

uses the same trick (his terminology), as in Hammond and O'Reilly, to

arrive at the mean performance equations without going through the

detailed analysis that was given in Chapter 4 of this work.

There is even a section on queueing network theory in Chapter 5 of

the book. Again it is brief, but probably adequate for application

purposes. For example, he does state that a queueing network is a

multidimenional birth and death process and writes out the general

equations for an open queueing network with exponential service times.

He does not develop the equations for closed networks, but simply

states them. He does discuss techniques for determining the normalizing

constant, but only considers single chain networks with load

independent service rates. From an applications point of view the 
.

material in this section of the book is close to the material in k

Chapters 5 (this work). However, there are salient differences. For %

example Burke's Theorem, local balance, and the fact the arrival

processes are not Poisson, are not even mentioned. In addition there
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are a few partial examples, but none worked from beginning to end as

those inChapter 5 of this work.

It is not surprising that service disciplines such as PS and

LCFSPR are not covered in this text since it is on communications

systems. However, it is somewhat surprising that classes and type IS

service centers are not covered in the book. As demonstrated by the

example in Chapter 6 of this work, classes are sometimes necessary in

communications system in order to describe the routing of messages. In

addition IS service centers can be used to account for propagation and

other delays that are encountered in networks that stretch across the

nation. In contrast to the text by Hammond and O'Reilly, this author -

is quite rigorous when it comes to specifying that a technique is an

approximation or that an assumption is made to get answer. In many

cases he does specify the range over which the approximation or

assumption is valid.

8.6.4 Final Remarks

One of the common failings in each of the three books reviewed is

that they all delegate very little space to the derivation of basic

queueing theory equations. The material is conceptually complex and can

be mathematically intimidating to such an extent that authors feel that

it is necessary to gloss over it so as to have room to present their

applications techniques. Understandably, since the texts are

applications oriented, one would expect them to be heavily weighted in %

this direction. It should be brought out that this gap needs to be
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bridged with references that are in themselves understandable.

It was-one of the purpose of the dissertation to enhance that L

understandability and thereby narrow that gap. It has done so by going

to the source material developed by pioneers in the discipline. Where

the explanations have been brief and obscure, they have been expanded

and clarified. Where illustrative examples where not given, they were

worked out. Where proofs could not be found, they were developed.

%N%
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APPEIX A

_ SUPPLEMMARY LOCAL BALANCE PROBLM1S10

A.1 FCFS with Two Classes

Figure A.l depicts a queueing network composed of one service

center with two customer classes. It is assumed the customers arrive

from Poisson sources. The mean arrival rates of class 1 and class 2

customers is X, and 12 respectively. It is also assumed that the

service time distributions of both classes are exponentially

distributed. However, the moan service rates may or may not be the

same. The network will be analyzed for both FCFS and LCPSPR service -

disciplines.

CLASS 1

X2 
"

•.'--:

Figure A.1 Service Center with Two Customer Classes.

The following analysis assumes that the service discipline is FCFS

and that the rates pl and 92 are different. The global balance

equations for states with two or fewer customers are:

1%-1 21P 0 = a P P(l) + 92P(2) 
%.,

0(1l+)12+Pl1P() =IP(1,1) + P2 P(2,1) + XIP(0)
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0.lX2+L2)(2)- pP(1,2) + P2P(2,2) + Y.2 (O)

(XI+X2+ll-("')- jP(l"l') + g 2P(2,l.l) + ).1 Ml

(X1+).2+p1 )P(l.2) - pP(1,1,2) + i 2P(2l.,2) + X.2P(l)

0.1+X2P2P(2l)- pP(1.2.l) + P2p(
2.2 .l) + ) 1P(2)

0.1 +]L +2P(2.2) - pP(l,2,2) + 92P(2,2,2) + ).P()

Observe that there are only seven equations and 15 unknowns. Also, note

that no matter how many equations are written there will always be more

unknowns than equations.

Now assume that local balance holds. That is, the rate of flow out

of a state due to customer of class c departing is equal to the rate of %

flow into the same state due to the arrival of a class c customer. The

local balance equations that correspond (the sum of the local balance

equations are the global balance equations) to the seven global

equat ions are:

X2 P(O) - IFzP(2)

).2p(1) - P&1P(2,1) J

IL~~ P(2) - **..2

- j 2P(2,2)

2 1PMl - ).1P(O)

..
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F2P(l~l) - 112P(2l)

).1P(l.2) p,1P(1Dl.2)

).2 P(l,2) - I2P(2.lh2)

P1P(1,2) - ) 2P(l)

). 1P(2, 1) -pP(l.2.l)

IL P(2,1) -1 2P(2,2.1)

j 2 P(2l1) - ).1P(2)

I.2 P(2.2) - 1 2P(2.2.2)

P2P(2,2) - X2P(2)

The following is a subset of the local balance equations

A1P(l) - xpO

P2P(2) - X.2P(O)

IJaP(1.1) - x P(l)

p1IP(l,2) - XP2

ii2P(2,l) - X2P(l)

ji2P(2,1) - X1P(2)

2P(2,2) X ).P(2)

Solving these equations in terms of P(O) results in:
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- P(2) - 0.1 (lip&2 ) P(O)

P(l2) - OL 1p~2PO

P(12) - (Xl) (X2) (1/12)2 (4) P

P(2,2) - Up X2) (1/tt2)2 P(1/&2

Observe that there are two equations for P(1,2) and P(2,1). Also

notice that they are inconsistent. The conclusion is that local balance

does not apply if the service rates are different for the two classes.

However, if ftp2P.u then local balance does hold, and the form of the

solution is

k l k2 ] [ / P k +k 2 ] p o
P(xl'x2.... xk) 1)L~1 )L2] %(i) %O

where k, and k2 equals the number of class 1 and class 2 customers

respectively.

A.2 LCFSPK with Two Classes

If the service discipline of the network in Figure A.1 is changed

to LCFSPl. then the global balance equations are:

0(1 +X2 )P(O) - 1 PP") + 112P(2)

- p1(11)+ pP(2.1) + X P(O)

(1 + 2+i2)P(2) -pP(1.2) + PpP(2jp2) + )12P(O)

0. 1 +2 +1 )P(1.1) -P 1P(1,1,1) + P2P(2,1,1) + ).1P(l)
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0~.1 +x 2 41p)P(1,2) - pP(1l1.2i + p2P(2.l,2) + ).1P(2)

(xi +x2+1 2 )P(2J - ji1P(1,Z.1) + g2P(2.2.1) + ).2P(l) e

(11+ 2+p)P(2,2) - JLP(1,2,2) + # 2p(2,2,2) + ).2P(2) *.'-N

The corresponding local balance equations are: ,-

)l( - Pl~P(l)

)2P(O) - P2P(2)

xpP(1) - ).1P(O)

).2p(') - 92P(2,1) -~

P2P(2) - ).2P(O)

X P(2,) - pP(l )

).2P(2,) - P2P(2,~)

i&2P(l2) - 12P()

XIP(l,2) -pP(l,1.2)

).2P(l.2) - 1 2P(2,l.2)

PJP(1,2 X1P(2)

)Ll(2I)- jp1P(l.2.1)

k2P(2.l) - P2P(2.2,l)

pP(2,1) X 2P(1)
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)1P(2,2) - p 1P(1,221

).2 P12,2) - ,2P(2,2,2)

I,2P(2.2) - X.2P(2)

The following is a subset of the local balance equations :

PiP(l) ).1P(O)

i2P(2) - I2P(O)

P1P(1l) - )1P(1)

P2P(2,2) - ).2P(2)

There are six equations and seven unknowns. Solving these in terms of

P(O) results in : w

P(l) - (X ) (lip 1 ) P(O)

P(2) - (X2 )  (1/P2 )  P(0) '.,.

P(1,1) - (X1)
2 (liP) 2 P(O)

P(1,2) - 0.1) (X2) (1/;L1 ) (1/P2) P(O)

P(2,1) - M ( (1i11) (/;L 2) P(O)
P(2,2) = (0.2)2 (1/;2)2 P(O)

The form of the solution is:

P(lx2, ...,xk) = I 1  2k2
] [(1 /)kl (14k2  P(0)

where k, and k2 equals the number of class 1 and class 2 customers

respectively.
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A.3 Lg= hAalrols with Two Exuomential Stales

A queUsein network that consists of a single service center is

depicted in Figure A.2. There is only one customer class, but the

service time Is represented by two exponential stages, and the service

discipline is last-come-first-serve-preemptive resume.

oI I
I I I- -

Sb, b2

S-

Figure A.2 Service Center with Two Ezponential Stages.
V. t

In order that the state summarize all past history of the process.

it must contain the stage that each customer was in when preempted and

his order at the service center. If the service center contains k L
customers, then let (lm2,...,mk) be the state, where a, is the stage ".%

of the last customer to arrive. .'. :.' .,

By Equating the rate of flow into and out of a state the following

global balance equations, for states in which there are two or fewer

customers, are obtained

a09P(O) - PlblP(l) + p2 P(2)

(111 ao)P(l) - aO.P(O) + 1 b1P(1,1) + P2 P(2,1)

(p2+e0 )P(2) - a1a1P(l) + PlblP(l.2) + p2P(2,2)

(pl+aO.)P(ll) - ao .P(l) + l 1 b1 P(11l.1) + 92P(2,1,1)
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(p1 a4a))(1.2) - aoXP(2) + Fib1P(1,l.2) + i2P(2.l.2)

(F2+aoP.P(2.!)-- alalP(l.1) + plb1P(l.2,l) 4 I2P(2,2,I)

(P2+aO9)P(2.2) - pla1P(l9 2) + itlb 1 P(l,2,2) 4 i2P(2.2.2)

In the first three equations there are severn unknowns. In the

first seven equations there are fifteen unknowns. Again, no mater how

zany equations are written there will always be sore unknowns than

equations.

The corresponding local balance equations are obtained by equating

the rate of flow out of a state due a customer leaving a stage of

service to the rate of flow into that state due to customer entering

that stage:

a0)P() - jab 1P(l) + PpP(2)

F1P(1) -ao.%P(O)

a01.P(l) - 1ab 1P(l~l) + ia2P(2,l)

ii2P(2) - aaP(1)

a0).P(2) - gabP(l,2) + 9 2P(2.2)

a0?%P(l,1) - aalb 1P(l,l~l) + 92P(2.1,1)

PJaP(l.2) - aoXP(2)

aO0%P(l.2) - &alb1P(lI.l.) + 92P(2.1.2)

1 2P(2.1) - ja&aP(l.l)

90).P(2.1) - ib 1P(l.2.1) + P12 P(2.2.1)
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- aP2P(2,2) - Pia1P(l,2)

a0).P(2.2) - plbP(l.2.2) + p2P(2,2.2)

The sun of the local balance equations are the global balance

equations. Therefore the solution of the local balance equations will

satisfy the global balance equations. The following is a subset of the

local balance equations

F1 P(1) - a0 )P(0)

h11P(2) - gaoP(1)

111P(1.2) - aOP(2)

112P(2,1) - p118P(1.l)

a2P(2.2) - Pi1aP(l,2)

Notie that there ae six equations and seven unknons. Solving these

equations in terms of P(0) results in:

P( ) -- P(O) ,441

I11 . 4.

Noieta hr r i q ations an evnukn•s Slig-hs

P(l) - P(0)

a0a )
P(2) - - P(O) 4

a02al.
2P(ll) - P()

22

P(1,2) - o 1 ) P(.
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P(2,1) - P(O)

P(2,2) - (aa))2P(O)
412) 2

The form of the solution for these six states is

where fi(*iL - aol/p 2  for s~i

a~,/2for al-2_

and 0- 1IP(O)

It is easy to verify that this is the solution for any state. It

satisfies both the local and global balance equations. The solution

also agrees with the equations in Chapter 6.
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APPENDIX B

- SOURCE LISTING OF MVA PROGRAM

FOR

MULTIPLE CHAIN. LOAD INDEPENDENT NETWORKS

Progrma MVA (input.output);

Const
Max M = 3; (Maxinum number of Service Centers)
MaxC = 10; (Maximum number of Chains or Classes) %
MaSize = 1000;

Type
Population Vector = Array[l..Moz C] of Integer;
Matrix = Array[l..Msx Mol..Max CT of Real.;
ServerTYpe = o..1; (0 - IS , 1 - all others)

Var
NN Max : Population Vectors,
L.T.R.VS : Matrix;
Length : Array[l..Maz-M.0..MaxSise] of Real;
Queue : Array[l..Mwa M] of ServerType:s
M : integer; (Number of Service Centers)
C : integer; (Number if Chains or Classes)
I.K : Integer;
X : Real;

This function increments the present population vector. N. and
is set to false. if N does not equal the maximum population
vector. N Max. In addition to the above parameters the length
of both population vector, C, is passed to the function.

Function IncrementPopulationVector
(Var N : Population Vector;
NMax : Population Vector;

C : Integer): Boolean;
Var "

Flag : Booleang
J : Integer;
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Begin
J := 1; (jlways start from the far left and proceed to the right)
Repeat

N[J] IT-N[J] + 1;
If N[J] <= NMaz[J] then Flag := True
Else (reset present column and increment next column)

Begin
Flag := False;
N[J] := 0;

End;
Until ((J ) C) Or Flag):
Increment-Population Vector := (J > C)

End;

Given a population vector, N, this function computes the raw
index value (0..MaxSize) of the matrix Length. The formula is :
Index := nl + [N Max(1)+1] n2 + [N Max(1) 1] INMsx(2)+1] n3 +

.0. + NMsx()+1[SNMaz(i)+1... [INM(C-2)+1] n(C-i)
where nl.n2.....nC are the elements of the population vector N.
and N Max(1),NMa(2),....N_Mx(C) are the elements of the maximum
population vector.N Max. Note the maximum index value is

(N max(1)+l] N Max(2)+i]... [NMax(C-1)], and is not
[fNax(1)+] [-NMax(2)+1]... [-Max(C-l)] [NM(C)].

Hence a considerable memory saving is accomplished by writing over
Length values that are no longer required by the MVA algorithm.
To take maximum advange of this saving the chain with the largest
population should be nC. .

Function Index (N.N Max : Population Vector; C:Integer): Integer;
Var

J.Sum.Radix : Integer: %
Begin

If C z i then Index := 0
Else

Begin
Sun := N1ll:
Rad = N Max[1] + 1-
For J "= 2 To (C-1) do
Begin

Sum :z Sum + ( N[J] * Radix );
Radix :. Radix * ( NMax[J] + 1 )

End; (C for *)
Index Sum

End (* else *)
End; (I Index O)
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Begin (* main 1rogr- *)
Writelni%
(r read parameters specific to this model e)
write('Nuuber of Service Centers => '); Readln(M);.
For I :- 1 to M do
begin
vrite('Service Center '.1:2.' is type => );
readln (Queue [I]) ;

end;
vrite('Number of Chains or Classes a> '); Readln(C);
For K := I to C do
begin

vrite('Number of jobs in chain '.K:2.' =) '); Nor

readln (N Maz (K] );
end;
vritein; V
For I=l to M do

For K:= 1 to C do
begin

vrite('Rolative number of visits [Center '.1:2.
', Chain '.K:2.'] => );
readln(V(I.K]

end ; . . . .

writein;
For I:=1 to M do

For K:=i to C do
begin

write('Mean Service Time [Center '.1:2.' Chain '.K:2. '1] => ');
readln(S[I.K])

end;

(initial parameters)
For I := 1 to M do Length[I.0] = 0.0;
(C initialize N = [(..C] := 0*)

For K =1 to C do N[K] :=0;
N[i 3. 1; (initalize population vector N :. [1.0,0.....0])

(e Perform calulations C)

Repeat
For K := i to C do 0 1wf

Begin
If N(K] a 0 then (C there are 0 jobs in chain k C)

For I :a 1 to M do L[I.K] := 0
Else
Begin (* caluate R e)

283
-%

* -, '



For I := 1 to M do
If Queue[I] = 0 (* if infinite server C)

then R[I.K] := S[IK]
Else

- Begin
N[K] := N[K] - 1:
R[IK] := S[I.K] * 1 1 + Langth[I.Index(NN_Haz.C)] ):
N[K] := N[K] + 1

End;

(* calulate throughput T *)
(C calualate L by Class )

X :- 0;
For I = 1 to M do X:= X + V[I.K] * R[I.K];
For I :1 to M do

Begin
T[I.K] : N(K] * V[I.K] / Z;-
L[IK] : T[I.K] * R[I.K]

End
End (* else *)

End; (* for *)
(* calulate total L of each queue *)
For I :- 1 to M do "%

Begin "" "'
I := 0;
For K := 1 to C do X := X + L[I.K];
Length[I,Indez(NN Kaz.C)l :•= • WIN

End;
Until Increment PopulationVector(N.NMaz.C);

(* print performance parameters *)
Writeln;
Writeln;
Writeln ('Center Chain Throughtput Response Time Q-Length ');
For i: to M do .

For K:=l to C do
begin

Write(' '.1:2);
Write(' '.1K:2);
Write(' ',T[IK]:10);
Write(' ',R[I.K]:10) ;
Writeln(' '. L[I,k]:10)

end
End. k h6
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